
Übungsbeispiel 3

Wärmeschutz einer Außenwand gemäß nachstehender Skizze

Übungsbeispiel 3

Aufgabenstellung

- 1. Welche Anforderungen stellt DIN 4108-2: 2013 für die abgebildete Außenwand bzgl. des Wärmeschutznachweises?
- 2. Erfüllt das betrachtete Bauteil die Anforderungen an den Wärmeschutz?
- 3. Berechnen Sie den U-Wert dieser Wand.
- 4. Welche Temperaturen stellen sich unter stationären Bedingungen bei einer Außenlufttemperatur von -10 °C und einer Innenraumtemperatur von 20°C zwischen den Schichten ein?
- 5. Berechnen Sie den Nennwert der Wärmeleitfähigkeit der für die Dämmung erforderlich wäre, um einen U-Wert von 0,35 W/m²K zu erreichen.

Übungsbeispiel 3

Aufgabenstellung

	Schicht	Dicke d	ρ	μ	S _d	∑s _d	λ	R	ΔΤ	θ	p _{Sat}
	[-]	[m]	[kg/m³]	[-]	[m]	/s _{d,T}	[W/(mK)]	[(m ² K)/W]	[K]	[°C]	[Pa]
	innen										
1	Leichtputz	0,02	1000								
2	Beton (1% Stahl)	0,2	2300								
3	EPS	0,1	30								
4	Kunstharzputz	0,02	1100								
	außen										
				$\Sigma s_d = s_{d,1}$			ΣR				<u> </u>
							R_{T}				
							U] W/(m²K)		

1. Welche Anforderungen stellt DIN 4108-2: 2013 für die abgebildete Außenwand bzgl. des Wärmeschutznachweises?

Anforderungen nach
$$01N4108-2:2013?$$

• Schwers | leichker Bauk; |?

 $M' = \mathcal{E}[p:d:] = + 2300 \frac{kg}{m^3} \cdot 0.20m = 460 \frac{kg}{m^3}$
 e^{kg}
 e^{kg}

2. Erfüllt das betrachtete Bauteil die Anforderungen an den Wärmeschutz?

Anforderungen erfüllt 2

$$ZR = R_1 + R_2 + R_3 + R_4 \ge 1.2^2$$
 $SR = R_2 + R_3 + R_4 \ge 1.2^2$
 $R = R_4 + R_5 + R_6 = 1.2^2$
 $R = R_5 + R_5 + R_6 = 1.2^2$
 $R = R_5 + R_5 + R_6 = 1.2^2$
 $R = R_5 + R_5 + R_6 = 1.2^2$
 $R = R_5 + R_5 + R_6 = 1.2^2$
 $R = R_5 + R_5 + R_6 = 1.2^2$
 $R = R_5 + R_5 + R_6 = 1.2^2$
 $R = R_5 + R_5 + R_6 = 1.2^2$
 $R = R_5 + R_5 + R_6 = 1.2^2$
 $R = R_5 + R_5 + R_6 = 1.2^2$
 $R = R_5 + R_5 + R_6 = 1.2^2$
 $R = R_5 + R_5 + R_6 = 1.2^2$
 $R = R_5 + R_5 + R_6 = 1.2^2$
 $R = R_5 + R_5 + R_6 = 1.2^2$
 $R = R_5 + R_5 + R_6 = 1.2^2$
 $R = R_5 + R_5 + R_6 = 1.2^2$
 $R = R_5 + R_5 + R_6 = 1.2^2$
 $R = R_5 + R_5 + R_6 = 1.2^2$
 $R = R_5 + R_5 + R_6 = 1.2^2$
 $R = R_5 + R_5 + R_6 = 1.2^2$
 $R = R_5 + R_5 + R_6 = 1.2^2$
 $R = R_5 + R_5 + R_6 = 1.2^2$
 $R = R_5 + R_5 + R_6 = 1.2^2$
 $R = R_5 + R_5 + R_6 = 1.2^2$
 $R = R_5 + R_5 + R_6 = 1.2^2$
 $R = R_5 + R_5 + R_6 = 1.2^2$
 $R = R_5 + R_5 + R_6 = 1.2^2$
 $R = R_5 + R_5 + R_6 = 1.2^2$
 $R = R_5 + R_5 + R_6 = 1.2^2$
 $R = R_5 + R_5 + R_6 = 1.2^2$
 $R = R_5 + R_5 + R_6 = 1.2^2$
 $R = R_5 + R_5 + R_6 = 1.2^2$
 $R = R_5 + R_5 + R_6 = 1.2^2$
 $R = R_5 + R_5 + R_6 = 1.2^2$
 $R = R_5 + R_5 + R_6 = 1.2^2$
 $R = R_5 + R_5 + R_6 = 1.2^2$
 $R = R_5 + R_5 + R_6 = 1.2^2$
 $R = R_5 + R_5 + R_6 = 1.2^2$
 $R = R_5 + R_5 + R_6 = 1.2^2$
 $R = R_5 + R_5 + R_6 = 1.2^2$
 $R = R_5 + R_5 + R_6 = 1.2^2$
 $R = R_5 + R_5 + R_6 = 1.2^2$
 $R = R_5 + R_5 + R_6 = 1.2^2$
 $R = R_5 + R_5 + R_5 + R_6 = 1.2^2$
 $R = R_5 + R_5 + R_5 + R_5 + R_6 = 1.2^2$
 $R = R_5 + R_5$

	Schicht	Dicke d	ρ	μ	S _d	∑s _d	λ	R	
	[-]	[m]	[kg/m³]	[-] [m]		/s _{d,T}	[W/(mK)]	[(m ² K)/W]	
	innen							-	
1	Leichtputz	0,02	1000				0,38 *	0,053	
2	Beton (1% Stahl)	0,2	2300				0,38 ^x	0,087	
3	EPS	0,1	30				0,047	2,128	
4	Kunstharzputz	0,02	1100				0,70	0,029	
	außen								
				T			0.7	2 207	

3. Berechnen Sie den U-Wert dieser Wand.

$$U = \frac{1}{R_{T}} \quad mit \quad R_{T} - R_{Si} + R + R_{Se}$$

$$R_{Si} = 0.13 \frac{m^{2}k}{W}; \quad R_{Se} = 0.04 \frac{m^{4}k}{W}$$

$$S. DIN EN 1506946: 2018, tab7,524$$

$$= \frac{1}{2.467 \frac{m^{4}k}{W}}$$

$$= 0.41 \frac{W}{m^{2}K}$$

4. Welche Temperaturen stellen sich unter stationären Bedingungen bei einer Außenlufttemperatur von -10 °C und einer Innenraumtemperatur von 20°C zwischen den Schichten ein?

$$q = U \cdot (\Theta_{i} - \Theta_{e}) = Ronstant$$

$$q = \frac{1}{R_{T}} (\Theta_{i} - \Theta_{e}) = \frac{1}{R_{T}} \cdot \Delta T_{gen} = \frac{1}{2.467} \cdot 30 = R2M_{h}^{2}$$

$$Q_{n} = \frac{1}{R_{n}} \cdot \Delta T_{n} = \frac{1}{R_{T}} \cdot \Delta T_{gen}$$

$$\Rightarrow \Delta T_{n} = q_{1} \cdot R_{n} \quad Oder$$

$$\Delta T_{s} = 12.6 \frac{w}{m^{2}} \cdot 0.13 \frac{m^{4}K}{w} = 1.6 K$$

$$\Delta T_{a} = 0.053 = 0.6 K$$

$$\Delta T_{2} = 0.087 = 1.1 K$$

$$\Delta T_{3} = 0.087 = 1.1 K$$

$$\Delta T_{3} = 0.087 = 1.1 K$$

$$\Delta T_{4} = 0.029 = 0.4 K$$

$$\Delta T_{4} = 0.029 = 0.4 K$$

$$\Delta T_{5:} = 0.009 = 0.5 K$$

$$\Delta T_{5:} = 0.009 = 0.5 K$$

$$\Delta T_{6} = 0.009$$

$$\Delta T_{7} = 0.009$$

$$\Delta T_{8} = 0.009$$

$$\Delta T_{8}$$

2-4. R, R_T, U, Temperaturgradienten, Temperatur zwischen den Bauteilschichten

	Schicht	Dicke d	ρ	μ	S _d	∑s _d	λ	R	ΔΤ	θ	p _{Sat}	
	[-]	[m]	[kg/m³]	[-]	[m]	/s _{d,T}	[W/(mK)]	$[(m^2K)/W]$	[K]	[°C]	[Pa]	
	innen							0,13	1,6	18.4		
1	Leichtputz	0,02	1000				0,38 *	0,053	0,6	//		
2	Beton (1% Stahl)	0,2	2300					0,087	1,1	17,8		
3	EPS	0,1	30				0,047	2,128	25, 9	16,7		
4	Kunstharzputz	0,02	1100				0,70	0,029	0,4	9 (
	außen							0,04	0,5	-9,6		
				$\Sigma s_d = s_{d,1}$	ΣR	2,297	230,1	1				
	X S. DIN 4108-4:2017 XX S. DIN EN 150 10456:2010 RT 2,467 U 0,41 W/(m2K) SOLL 3											
	$ABemessing = \lambda_D \cdot 1.03$, $vg1 \mp Na$ = 0.046 $\frac{W}{mK} \cdot 1.03 = 0.047 \frac{V}{mK} = 0.001 \frac{W}{mK}$											

5. Berechnen Sie den Nennwert der Wärmeleitfähigkeit der für die Dämmung erforderlich wäre, um einen U-Wert von 0,35 W/m²K zu erreichen.

$$V_{SOLL} = 0.35 \frac{W}{m^{2}K}$$

$$R_{TSOLL} = M_{USOLL} = M_{0.35} = 2.857 \frac{m^{2}K}{W}$$

$$R_{SOLL} = R_{T.SOLL} - R_{Si} - R_{Sc} = 2.857 - 0.13 - 0.04$$

$$= 2.687 \frac{m^{2}K}{W}$$

$$R_{Damm, SOLL} = R_{SOLL} - R_{1} - R_{2} - R_{4}$$

$$= 2.687 - 0.053 - 0.087 - 0.029 = 2.518 \frac{m^{2}K}{W}$$

$$R = \frac{d}{\lambda} \Rightarrow \lambda = \frac{d}{R} = \frac{0.10 \text{ m}}{2.518 \frac{m^{2}K}{W}} = 0.040 \frac{W}{mK} = \lambda_{Bemony}$$

$$\lambda_{Bemong} = \lambda_{D} \cdot 1.03 \quad \text{für EPS (nach DIN 4108-4:2017.52K)}$$

$$= \lambda_{D} = \frac{\lambda_{Bemonum}}{1.03} = \frac{0.040 \frac{W}{mK}}{1.03}$$

$$= 0.039 \frac{W}{mK} \qquad \text{Nennuot}$$

$$= 0.039 \frac{W}{mK} \qquad \text{Nennuot}$$

$$= 0.039 \frac{W}{mK} \qquad \text{Nennuot}$$

	Schicht	Dicke d	ρ	μ	S _d	∑s _d	λ	R	ΔΤ	θ	p _{Sat}
	[-]	[m]	[kg/m³]	[-]	[m]	/s _{d,T}	[W/(mK)]	[(m ² K)/W]	[K]	[°C]	[Pa]
	innen							0,13	1,6	20	
1	Leichtputz	0,02	1000				0,38	0,053	0,6	18,4	
2	Beton (1% Stahl)	0,2	2300				2,3	0,087	1,1	17,8	
3	EPS	0,1	30				0,047	2,128	25,9	16,7	
										-9,2	
4	Kunstharzputz	0,02	1100				0,7	0,029	0,4	-9,5	
	außen							0,04	0,5	-10	
			•	$\Sigma s_d = s_{d,1}$			ΣR	2,297			X
							R_T	2,467			

W/(m²K)

0,41