
Übungsbeispiel 2

innen

1: 2 cm Teppichboden, $\lambda = 0.06$ W/(mK)

2: 5 cm Zementestrich, $\lambda = 1,4$ W/(mK)

3: 8 cm Wärmedämmschicht PUR

4: 18 cm Beton, $\lambda = 2,3$ W/(mK)

außen

Übungsbeispiel 2

Aufgabenstellung

- 1. Welche Anforderungen stellt DIN 4108-2: 2013 für die abgebildete Decke bzgl. des Wärmeschutznachweises?
- 2. Welchen Nennwert für λ muss die Dämmung aufweisen, damit der Wärmeschutznachweis geführt werden kann?
- 3. Berechnen Sie den U-Wert dieser Decke.
- 4. Welche Temperatur stellt sich unter stationären Bedingungen bei einer Außenlufttemperatur von -10 °C und einer Innenraumtemperatur von 20°C zwischen Schicht 3 und Schicht 4 ein?

Übungsbeispiel 2

Aufgabenstellung

	Schicht	Dicke d	ρ	μ	S _d	∑s _d	λ	R	ΔΤ	θ	p _{Sat}
	[-]	[m]	[kg/m³]	[-]	[m]	/s _{d,T}	[W/(mK)]	[(m²K)/W]	[K]	[°C]	[Pa]
1											
2											
										_	
3											
4											
'			•	$\Sigma s_d = s_{d,1}$			Σ R				V
							R_T				
							U		W/(m²K)		

1. Welche Anforderungen stellt DIN 4108-2: 2013 für die abgebildete Decke bzgl. des Wärmeschutznachweises?

	V			
Spalte Zeile	- Anto	Schwies Bau	N 4108-	2:2013
Zelle	1	Schwies Bau	k:12	Va.
<u> </u>	_ /	Day de	= 2300 -	92.0,18m = 414 m
1	Wän Räu	1 Beton Jeton	DINEN ISO 104	(g) 0,18 m = 414 m ² >100 kg Schwer
2	Dac beh		Tab 3, 5. 15	1/ Schwer
3 3.1	Deci R	= 175 mck	DIN4108-	2:2013, Tab. 3, S.15
3.2	, 130	11 W 2es	k 4.19	
3.3		niedrigeren Räumen	0,00	
3.4		zu Räumen zwischen gedämmten Dachschrägen und Abseitenwänden bei ausgebauten Dachräumen	0,35	
4	Decken beheizter F	Räume nach unten		
4.1 ^a		gegen Außenluft, gegen Tiefgarage, gegen Garagen (auch beheizte), Durchfahrten (auch verschließbare) und belüftete Kriechkeller	1,75	
4.2		gegen nicht beheizten Kellerraum		
4.3		unterer Abschluss (z. B. Sohlplatte) von Aufenthaltsräumen unmittelbar an das Erdreich grenzend bis zu einer Raumtiefe von 5 m	0,90	
4.4		über einem nicht belüfteten Hohlraum, z. B. Kriechkeller, an das Erdreich grenzend		4

2. Welchen Nennwert für λ muss die Dämmung aufweisen, damit der Wärmeschutznachweis geführt werden kann?

J										
	Schicht	Dicke d	ρ	μ	Sd	$\sum s_d$	λ	R		
	[-]	[m] [kg/m³] [-] [m] /s _{d,T}		[W/(mK)]	[(m²K)/W1	/,				
	innen							0,17 185.	x 5. DIN EN 190 4: 2013; 5.13 2 le 5:4 Xat 1 mk	
1	Teppich	0,02					0,06×	0,333	X S. DIN 4108-4:2013; S. 13 Le 5:4 Xat No min X S. DIN 4108-4:2013; S. 13 Le 5:4 Xat No min XX S. DIN 4108-4:2013; S. 13 Le	
3. Berechnen Sie den U-Wert dieser Decke. 1,4 × 0,036 x 5. DIN 4108 4: 2013 1 Televan										
3	Do'mmung	0,08					S XXX	41393	X 5. DIN 4108-4:2013,5.13 2 1e 5.4 X 5. DIN 4108-4:2013,5.13 1 Ascorption X 5. DIN 4108-4:2013, 5.22 2 le 5.4 XX 5. DIN 4108-4:2013, 5.22 2 le 5.4 XX 5. FN a: Ascorption Nennuerl relevant XXX 5. FN a: Ascorption Nennuerl	
4	Beton	0,18	2300×				2,3 ×	0,078		
	außen							0,04 Bsc		
$\Sigma s_d = s_{d,T}$ ΣR 1, 75										
Di	man Cian 'a	d 0	v	1,96						
Dimensioni erang du Dammung U D,51 W/(m²K)										
Dimensioni erang du Dammung $R = R_1 + R_2 + (R_{32}) + R_4 = 1.75 \frac{m'K}{W}$ $U D_r = 1.75 \frac{m'K}{W}$										
$R_3 \ge 1.75 - R_4 - R_2 - R_4$										
		333 - 0,036	- 0,078	λ -	= 13	= 0,059 W				
= 1,75 - 0,333 - 0,036 - 0,078 Einzelwok s. $= 1,303 \frac{m^2K}{W}$ $= 1,303 \frac{m^2K}{W}$ $= 1,303 \frac{m^2K}{W}$										
	$R = \frac{d}{\lambda} \Rightarrow \lambda = \frac{d}{1303} = \frac{0.08 \text{m}}{1303 \frac{\text{m}^2 \text{K}}{\text{W}}} = 0.061 \frac{\text{W}}{\text{mK}}$ Die Dämmung daf maximal einen Nennweit des Wärmelestfähiglist von 0,059 \frac{\text{W}}{\text{mK}} \text{ aufweisen}									
R	= カラ/	Bemessung St	1303 m2K = C	,061	de Wa	"inelesty	Chighest von 0,059 mk aufweisen			

3. Berechnen Sie den U-Wert dieser Decke.

$$U = \frac{1}{R_{T}}$$

$$mit R_{T} = R_{SL} + R + R_{Se}$$

$$R_{SL} = 0.17 \frac{m^{2}K}{W} ; R_{Se} = 0.04 \frac{m^{2}K}{W} \frac{s. DN}{s. 24. Tab. 7}$$

$$R_{T} = 0.17 + 1.75 + 0.04 = 1.96 \frac{m^{2}K}{W}$$

$$U = \frac{1}{R_{T}} = \frac{1}{1.96 \frac{m^{2}K}{W}} = 0.51 \frac{W}{m^{2}K}$$

$$L > s. Tabelk$$

4. Welche Temperatur stellt sich unter stationären Bedingungen bei einer Außenlufttemperatur von -10 °C und einer Innenraumtemperatur von 20°C zwischen Schicht 3 und Schicht 4 ein?