

Elektrische Messtechnik Vorlesung 1

Prof. Dr. Peter Weber

Wintersemester 2025/26
Im Studiengang Elektro- und Informationstechnik (B.Eng.)

Spielregeln in der Präsenz-Vorlesung

- Besuch der Vorlesungen erhöht die Chance auf eine Gute Note bzw. Klausurbestehen
- Ihre Fragen und Anmerkungen gehen vor Unterbrechen Sie mich gerne, wenn ich Ihre Meldung übersehen sollte
- Keine "Side Meetings" in der Vorlesung Paralleldiskussionen zu zweit verbreiten zu viel Unruhe
 - → Fragen, Ideen oder Anmerkungen bitte immer in die große Runde keine Hemmungen
 - → Es gibt keine dummen Fragen Niemand wird für eine Wortmeldung "augebuht"!
- Pünktlich erscheinen Später hereintröpfelnde Teilnehmer verbreiten Unruhe
- Verlassen der Vorlesung bitte nur zur Pause oder zum Ende (logischerweise ausgenommen Toilettengänge)
- Am Ende der Vorlesung meinen letzten Satz vor dem Aufstehen abwarten.
- Telefone auf "leise"
- Ich wünsche mir immer Ihr Feedback sofort in der Vorlesung oder gerne auch z.B. per mail

Organisation

andandandandan

Vorlesung:

Montag 08:15 h bis 11:30 h Raum: Hung C-101

Start 13.07.2025 - Ende 26.01.2026

Labor (Herr Michalik):

Montag 11:45 h bis 15:45 h

Terminorganisation bei Herrn Michalik

CampUAS - Vorlesung (P. Weber):

https://campuas.frankfurt-university.de/course/view.php?id=4525

Weber: Elektrische Messtechnik - WiSe 25/26

Enrollment Key: alessandrovolta

CampUAS - Labor (R. Michalik):

https://campuas.frankfurt-university.de/course/view.php?id=4433

Michalik: Labor Elektrische Messtechnik - WiSe 25

Enrollment Key: MTLAB-WiSe2025

Wichtig: Vorbesprechung Labor – Termin Kommt von Herrn Michalik

Bitte unbedingt in beiden Kursen einschreiben (auch bei Herrn Michalik).

Sie verpassen sonst wichtige Infos bzw. werden bei der Laborterminvergabe nicht berücksichtigt

Raum: 8-205

That's Me

Professor, Frankfurt University of Applied Sciences (since April 2020)

Studiengangsleiter Maschinenbau Professor für Industrial Engineering & Metrology

Head of Production, optoVision GmbH, Rodenstock, Langen

Production & engineering of ophthalmic lenses

Head of Process Engineering, Berliner Glas KGaA (ASML), Berlin

High precision ceramics components for semiconductor photolithography

Project Manager, R&D, Berliner Glas KGaA (ASML), Berlin

Development of electrostatic wafer clamp for EUV photolithography

Quality Engineer, R&D, Carl Zeiss SMT, Oberkochen

Development of semiconductor photolithography optics

Application Engineer / Quality Coach, Leybold Vacuum GmbH, Köln

Technical interface for key accounts w.r.t. vacuum applications

PhD in Solid State Physics, <u>University of Stuttgart</u>

Photonic excitation of spin states in layered magnetic materials

Physics Diplom, Heinrich-Heine-Universität Düsseldorf

Physics, **University of Edinburgh**

andandandandan

Elektrische Messtechnik

An was denken Sie?

Was erwarten Sie?

In einem Wort!

https://fra-uas.particifyapp.net/p/53014853

20.10.2025

Ergebnisse bewerten

Graphen auswerten

Multimeter

Messschaltung

neue Kenntnise

Messchaltung

Praktische Erfahrung

Messverfahren

Messfehler berechnen

Statistik

Messfehler≤

Oszillographieren

Messgerät Aufbau

Online Skript

Datenanalyse

Genauigkeit

Richtig messen

Richtige Auswertung

Toleranz Richtige Aus Messgeräte

Eine interessante Vorlesu

Messmethoden

Komplexere Messungen Messbrechnungen

Verschiedene Messarten

Messgerät Funktionalität

Messergebnis und Messabweichung

Statistik - Normalverteilung

Gültige Stellen

Fehlerfortpflanzung

Kalibrierkurven

Elektrische Messtechnik

Prozessstabilität

Messkette - Digitalisierung

Strom Spannung Widerstand

Periodische el. Größen

Verstärkung von Signalen

Was könnten wir messen?

Gummibärchen –Was können wir messen?

MASSE GRÖSSE DER PACKUNG **BRENNWERT INHALTE IN %** WASSERANTEIL ANTEIL DER LUFT IN DER PACKUNG LEITFÄHIGKEIT **GUMMIBÄRCHEN** ZUGFESTIGKEIT WAS KANN MAN DARAN MESSEN? GB e je nach Farbe DICHTE HAUPTKNOTEN 11 HÄRTE E-MODUL VERSCHLUSSFALZ ABSTABD MESSEN ==> RICHTIG VERSCHLOSSEN? **GESCHMACK?**

Zeit

Aufwand

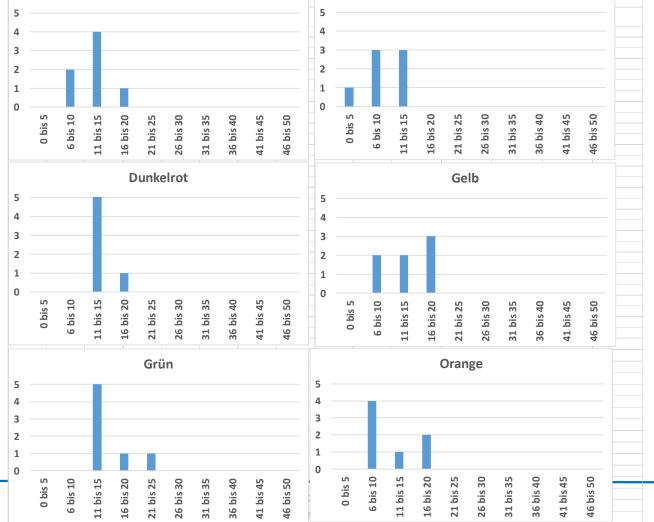
MessEquipment

Klare Fragestellungen

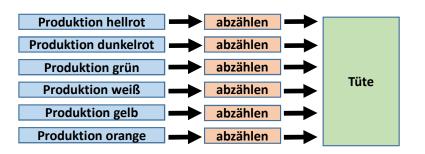
- Was nutzt es uns, zu messen?
- Was können wir einfach messen?

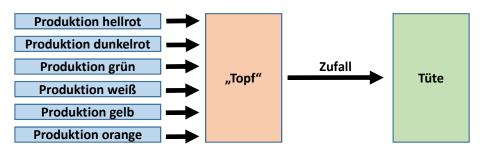
- Bilden Sie m Gruppen mit je n Teilnehmern.
- Sie haben 20 30 Minuten Zeit.
- Bestimmen Sie eine Person Ihrer Gruppe, die im Anschluss Ihr Ergebnis präsentiert.
- Zählen Sie, wie viele Gummibärchen jeder Farbe sich in Ihrer Tüte befinden
- Überlegen Sie sich eine geeignete Darstellungsform (bzw. Darstellungsformen) Ihres Ergebnisses.
- Wie aussagekräftig ist Ihr Ergebnis.
- Welche Schussfolgerungen können Sie aus den Daten ziehen?

Auswertung der Messdaten


Masse der Tüte	175	g											.111
Gummibärchen pro Tüte	Weber	Gruppe 01	Gruppe 02	Gruppe 03	Gruppe 04	Gruppe 05	Gruppe 06	Minimum	Maximum	Spanne Max-Min	Mittelwert	Standard- abweichung	Standard- abweichung [%]
Hellrot	14	18	11	15	9	9	11	9	18	9	12,4	3,11	25,0
Dunkelrot	14	14	15	12	13	13	19	12	19	7	14,3	2,119	14,8
Grün	14	19	15	21	13	13	15	13	21	8	15,7	2,864	18,2
Weiß	11	5	13	8	10	10	14	5	14	9	10,1	2,799	27,6
Gelb	16	13	10	10	16	16	12	10	16	6	13,3	2,548	19,2
Orange	9	9	13	10	17	17	7	7	17	10	11,7	3,731	31,8
Gesamtmenge	78	78	77	76	78	78	78	76	78	2	77,6	0,728	0,9
Masse / Stück [g]	2,24	2,24	2,27	2,30	2,24	2,24	2,24	2,24	2,30	0,06	2,26	0,02	1,0
vankung der Masse der Tüten auf Basis des Mittelwertes der Masse eines einzelnen Gummibärcher									176,0	4,51	175,0	1,6	0,9

Auswertung der Messdaten





Hypothesen auf Basis der Daten

ասիավավաղալ

Überlegungen auf Basis einzelner Zählungen

- Es wird nach Beliebtheit der Farben unterschieden
- Es wird nach Herstellkosten der Farben unterschieden
- Es wird nach Lagerbestand abgefüllt
- Es wird nach Ablaufdatum Abgefüllt

Fazit nach Abgleich aller Zählungen

- Es wird nach "Gewicht" abgefüllt
- Die Farben sind zufällig
 - Eine Tüte ist nicht aussagekräftig!
 - Statistik Mittelwert Abweichung!
 - Prozentuale Auftragung

