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Agenda heute

Übersicht

• Einleitung / Motivation
• Numerische Programme
• Spannungszustände (Biegebalken, von Mieses)
• Vorgehen bei der Berechnung (11 Schritte)
• Matrix-Steifigkeits-Methode
• Koinzidenzmatrix
• Numerische Methoden
• Energieprinzip
• Wärmeübertragung
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Definitionen
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Finite Elemente

• Numerisches Verfahren

• Festigkeits- und Verformungsuntersuchungen von Festkörpern

• Elektrische Felder und räumliche Temperaturverteilung 

• Komplexe Geometrien (analytisch praktisch nicht berechenbar)

• Unterteilung in endlich viele Teilgebiete (Teilkörper)

• Lösung über Ansatzfunktion

• Unterschied: Integralrechnung (analytisch) mit infinitesimal kleinen Gebieten 



Gründe für FEM heute
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Quelle: 
Skript Prof. Albrecht, 
FEM Grundlagen, 2019



Generatives Design

• Ursprung in der Architektur

• Basis ist ein erster Entwurf (CAD)

• Über einen Algorithmus erfolgt 
eine Computersimulation

• Veränderung durch Computer

• Entscheidung / Auswahl durch 
Konstrukteur
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Quelle: 
Bohnacker, H., Laub, J., Groß, B., Lazzeroni, C.: Generative Gestaltung, 
www.generative-gestaltung.de, 2009

http://www.generative-gestaltung.de/
http://www.generative-gestaltung.de/
http://www.generative-gestaltung.de/


Beispiel Autodesk Fusion 360
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CAD Konstruktion FEM Simulation Generatives Design



Neue Fertigungsmethoden

19.01.2026 FEM – Prof. Dr. Enno Wagner 7

Herkömmliche Fertigung aus 
mehreren Blechteilen. Mittels 
verschiedensten, aufwendigen 
Arbeitsschritten hergestellt

Kostengünstiges Gußteil, Prototyp 
mittels 3D-Druck hergestellt

Computeroptimiertes Leitbauteil, 
mit „intelligenter“ Struktur, nur 
mittels 3D-Druck hergestellbar

Beispiel Konzept E-Fahrzeug e.GO der RWTH Aachen

Quelle: Eigene Aufnahmen auf der Autodesk University, Darmstadt 2019



Unterschiedliche FEM Software

1.) Nutzung spezieller FE-Berechnungsprogramme: 

• NASTRAN

• ABAQUS 

• ANSYS 

• MARC 

2.) Nutzung von CAD-Programmen mit integriertem FE-Berechnungsprogramm: 

• CATIA 

• NX 

• CREO (ProEngineer) 

• SOLIDWORKS 

• Autodesk Fusion 360
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=> Generierung des FE-Netzes: im FE-
Programm /auf Basis importierter CAD-
Geometriedaten 

=> Diese Programme besitzen in der Regel 
nicht den Umfang an Analysemethoden 
und  Elementtypen wie spezielle FE-
Berechnungsprogramme 



Definition
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Analytischer Ansatz bei komplizierten Strukturen und 
Diskontinuitäten in der Geometrie oft nicht möglich oder 
sehr aufwendig.

Bei FEM:
- Gesamtstruktur in finite Elemente aufgeteilt
- An Schnittstellen (Knoten) gelten 

Gleichgewichtsbedingungen
- Berechnungswerte werden an angrenzende Elemente 

übertragen
- Modularer Aufbau, Strukturen mit endlichen 

Freiheitsgraden, beliebig verfeinerbar => Näherung



Biegebalken
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Beispiel Biegebalken

Quelle: 
Skript Prof. Albrecht, 
FEM Grundlagen, 2019



Dehnung

Verformung eines elastischen Stabes der Länge l
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Quelle:
Schnell, Gross, Hauger: 
TM2 - Elastostatik

Gilt nur für konstante 
Querschnittsfläche !

Dehnung   (dimensionslos)



Spannung-Dehnungs-Diagramm

• Genormter Zugversuch zur 
Ermittlung von 
Werkstoffkennwerten

• Linearelastischer Bereich bis zur 
Fließspannung F (Streckgrenze)

• Danach bleibende Verformung

• W auf wirkliche 
Querschnittsfläche Aw bezogene 
Spannnung  ist normiert auf A
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Quelle:
Schnell, Gross, Hauger: TM2 - Elastostatik

Rm

Re Re = Streckgrenze
Rm = Zugfestigkeit



Spannungszustände

Spannungen am Volumenelement

• Realer mehrachsiger Spannungszustand

• Betrachtung aller Raumrichtungen durch 
Querkontraktionszahl v (Einschnürung)
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Spannungen am 3D Körper

 = Normalspannungen
 = Schubspannungen



Spannungszustände

19.01.2026 FEM – Prof. Dr. Enno Wagner 14

Spannungen



Spannungszustände

Vergleichsspannung (von 
Mieses)
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Komplexer mehrachsiger 
Spannungszustand
=> Kein Vergleich möglich

Einfacher, einachsiger 
Spannungszustand
=> Vergleich mit Zugfestigkeit aus 
Zugversuch



Vergleichsspannung

Berechnung der von Mieses-Spannung
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Mohrscher Spannungskreis

Beschreibung durch Biegung und Torsion:



Grundsätzliches Vorgehen 

bei der Berechnung 

mittels FEM 

19.01.2026 FEM – Prof. Dr. Enno Wagner 17



Beispiel heute

1. Beispiel: 

Stab mit 2 unterschiedlichen Querschnitte wird auf Zug belastet.
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Vorgehen

1. Schritt: Aufteilen des Bauteils in Finite Elemente (FE)

Verbindungsstellen sind Knoten (K)

Knoten: 

• Sprunghafte Änderung von 
• Geometrie
• Material
• Äußere Kräfte

• Äußere Kräfte

• Innere Kräfte der Elemente Fn,m
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Finite Elemente: 
Innere Kräfte Fn,m

 n = Nummer Element
m = Nummer Knoten



Freischneiden
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TIPP: 
Gedanklich die Knoten in Kraftrichtung verrücken und 
Orientierung der resultierende Kräfte einzeichnen



Vorgehen

2. Schritt: Betrachtung am Element
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FE1

Annahme:
Die Kraft Fn,m erzeugt am 
Finiten Element n die 
Verschiebung um

Es herrscht Kräftegleichgewicht am Element: 
F11 + F12 = 0



Vorgehen

3. Schritt: Bestimmung der Elementen-Steifigkeit ki 

Allgemeine Form der Elementen-Steifigkeit: 

4. Schritt: Betrachtung am Knoten:
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Vorgehen

5. Schritt: Aufstellen der Gleichungen => Matrizenform

6. Schritt: Randbedingungen

7. Schritt: Einsetzen der Randbedingungen und lösen der Gleichungen

8. Schritt: Streichen der Zeilen und Spalten (für u=0)
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Vorgehen

9. Schritt: Berechnung der Verschiebungen

10. Schritt: Berechnung der Lager-Reaktion

11. Schritt: Ermittlung der Spannungen
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Beispiel 2

Beispiel 2

Gegeben

Balken (E, A(x), l), 

einseitig eingespannt, auf Zug belastet mit 
Kraft F, (Eigengewicht wird vernachlässigt)

Gesucht

• Verschiebung u im Kraftangriffspunkt

• Auflagerkraft FAL 

• maximale Spannung x
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Beispiel 2
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Analytische Betrachtung

A(x) = A0 (l – x/2l)

Integraltafel:

න
𝑑𝑥

𝑎𝑥 + 𝑏
=

1

𝑎
∙ ln 𝑎𝑥 + 𝑏



Berechnung an der Tafel

• 1 Element

• 2 Elemente
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Ergebnisse
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Es ist:
ui = C * l * F / (E A0) 

Vergleich von Analytischer und FEM Rechnung für den Faktor C 



Alternative Berechnungsmethoden
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Finite Elemente Methoden

Matrix-Steifigkeits-Methode 1

Federelement
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Finite Elemente Methoden

Matrix-Steifigkeits-Methode 2

2 Feder Elemente
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Finite Elemente Methoden

Matrix-Steifigkeits-Methode 3

Gebundenes 

System
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Finite Elemente Methoden

Koinzidenz-Matrix
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Finite Elemente Methoden

Koinzidenz-
Matrix
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Finite Elemente Methoden

Koinzidenz-Matrix
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Finite Elemente Methoden

Koinzidenzmatrix
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Numerische Berechnungsmethoden
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FE Methoden

H-Element-Methode

• Auch kurz „h-Methode“ genannt

• Häufig verwendete Methode (ANSYS)

• große Anzahl von Elemente 

• relativ einfachen Lösungsansätzen

• Nachteilig: 
• feine Strukturen werden nicht gebraucht, wo keine großen Spannungsgradienten auftreten

• Wo große Spannungsgradienten auftreten, benötigt man feine FEM-Netze 

• Feine Netze bedingen einen hohen Aufwand an Netzgenerierung und Rechenleistung. 

• Wo sich hohe Spannungsgradienten befinden, erhält man erst nach der ersten Rechnung der 
Struktur
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FE Methoden

Verfeinerung mittels h-Element-Methode

=> Steigerung der Genauigkeit durch eine Erhöhung der Elementdichte
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FE Methoden

H-Element-Methode

„h-Adaptivität“ 

Steigerung der Genauigkeit erfolgt durch eine Erhöhung der Netzdichte

=> zusätzliche Elemente hinzugefügt werden  

„r-Adaptivität“ 

Erhöhung der Netzdichte, durch Verschieben der Knoten in Bereiche hoher 
Spannungsgradienten; 

=> Anzahl der Elemente bleibt konstant
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FE Methoden

p-Element-Methode

Theoretisch möglich: 

Erzeugung von Elemente mit beliebig hoher Ordnung der Ansatzfunktion durch Hinzufügen 
weiterer Potenzen. 

Praktisches Problem: 

Die Anzahl der zu berechnenden Freiheitsgrade, steigt vor allem bei 2- bzw. 3-dimensionalen 
Problemen, rapide an: 

Dreieckselements mit quadratischer Ansatzfunktion => sechs Freiheitsgrade, 

Dreieckselement mit kubischer Ansatzfunktion => zehn Freiheitsgrade 

Bei FE-Modelle mit über hunderttausend Elementen

=> mathematischer Aufwand nimmt exorbitante Dimensionen an

=> daher vollständige Polynomansätze, meist nur bis zum kubischen  Ansatz verwendet.  
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p-Element-Methode

Zusätzlicher Elementtyp, „p-Element“ genannt

 keine fest vorgegebenen Ansatzfunktionen

 bei  Bedarf in ihrem Polynomgrad variieren

 Reduktion des mathematischen Aufwand bei 
vergleichsweise hoher Qualität  der Simulation
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FE Methoden

Creo Simulate

• Creo-Simulate benutzte Geometrie Elemente Analyse (GEA) basiert auf dem 
Prinzip der sogenannten „p-Methode“

• Die Steigerung der Genauigkeit erfolgt bei der „p-Methode“ durch das 
Erhöhen der Polynomordnung der Ansatzfunktionen

• bestehendes FE-Netz bleibt erhalten

• Creo-Simulate steuert den Grad der Ansatzfunktionen automatisch

• Es werden nur diejenigen Elementkanten mit  Ansatzfunktionen höherer 
Ordnung versehen, bei denen es auch tatsächlich notwendig ist
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FE Methoden

Im rechten Bild wurde die Ordnung der Ansatzfunktion der gekrümmten 
Elementkante von einem Polynom dritten Grades (3 Elemente auf dem 
Kreisbogen) auf ein Polynom sechsten Grades (6Elemente) erhöht
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FE Methoden

Hierzu verwendet Creo-Simulate zwei unterschiedliche 
Konvergenzmethoden:

„Adaptive Einschritt-Konvergenz“ 

„Adaptive Mehrfach-Konvergenz“
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FE Methoden

Adaptive Einschritt-Konvergenz (E) 
• Rechenlauf in 2 Schritten beginnend mit Polynomgrad 3 

• Spannungsfehler werden berechnet

• anhand dieser Fehler erfolgt neue Polynomgradverteilung 

• Die Methode ist  empfehlenswert 

Vorteile: 

• höhere Geschwindigkeit, nur zwei Berechnungsschritte  

• weniger Verbrauch von Plattenplatz  

• Keine unnötigen Freiheitsgrade im Modell 

• Direkte, auf die Spannung bezogene Fehlerabschätzung  

• Spannungsberechnung auf zwei Arten  

• Singularitäten treiben nicht den lokalen Polynomgrad  
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Nachteile: 
• Keine Konvergenzkurve 
• Keine Konvergenzvorgabe 
• Fehlerwert schwierig zu interpretieren
• Spannungsbild oft zackig und ausgefranst, 

obwohl gute Ergebnisse 
• Symmetrische Bauteile haben ein etwas 

unsymmetrisches Spannungsbild



FE Methoden

Adaptive Mehrfach-Konvergenz 

• Creo 2.0 Simulate führt mehrere Rechenläufe durch

• jeweils Erhöhung des Polynomgrades bis max. 9. 

• Konvergenzgrad wird angegeben (Ergebnisdifferenz zweier aufeinanderfolgender 
Rechenläufe in %). 

• Der Konvergenzgrad wird vorgegeben; die Berechnung schließt ab, wenn der 
Vorgabewert erreicht ist!

Vorteile:

• Gemischte Modelle (Balken, Schalen, Tetraeder) 

• Modelle mit isotropem Materialverhalten 

• Angabe der Konvergenz
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Neues Thema:

Energieprinzip
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Energieprinzip

Ansatz

• Wird ein elastisches System unter Einwirkung einer äußeren Kraft F 
verformt, so wird dabei eine Arbeit W verrichtet.

• Die inneren Kräfte arbeiten unter dem Einfluss der Normalkraft der 
äußeren Kraft entgegen

• Die Formänderungsenergie wird hierbei als innere Energie gespeichert

• Hierfür wird das Gesamt-Potential  eingeführt

• Es ist 

             = Ua + Ui
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Ua = potentielle (äußere) Energie der äußeren Kräfte
Ui = gespeicherte innere Energie im elastisch verformten System 



Energieprinzip

Allgemeine Form der DGL: 
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Energieprinzip

Äußere Energie:

Ua = -  F ds 

 = - F u
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Annahmen:

- Die Kraft ist Konstant über den 
gesamten Weg ds

- Der Weg ds ist sehr klein gegenüber 
der Gesamtlänge l

- Es gehen nur die äußeren 
Belastungen, nicht die 
Auflagerreaktionen ein 



Energieprinzip

Innere Energie

Die innere Energie Ui gleicht dem Produkt aus Energiedichte ෩𝑈𝑖 und Volumen V

Ui = ෩𝑈𝑖 V             =>    ෩𝑈𝑖 = 0׬

𝜀
𝜎𝑥𝑑𝜀 

19.01.2026 FEM – Prof. Dr. Enno Wagner 52





 = E 



Energieprinzip

Energieprinzip

Extrema- / Variationsprinzip

Das System ist im Gleichgewicht, 
wenn das Gesamtpotential   
stationär ist => es nimmt ein 
Extremum (Minimum) an

Ui = ½ k u2

Ua = F u

 = Ui + Ua = ½ k u2 – k u u = - ½ k u2
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Potential 



Lösungsverfahren der DGL

1.) Galerkin-Verfahren

 Methode des gewichteten Restes

 Näherungsfunktion / Gewichtungsfunktion => gleicher Ansatz

 Ergebnis => Lösung + Rest (Rest soll möglichst klein sein)

2.) Rayleigh-Ritz

 Prinzip der virtuellen Verrückung

 Variationsprinzip => Ersatzgleichgewichtsfunktion

    => Gleichheit der inneren und äußeren Arbeit

 Gleichung wird nicht direkt gelöst

 Lösung über Ansatzfunktion, RB einsetzen und auflösen
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Energieprinzip
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Diese Integralgleichungen gilt es zu lösen, 
um die gesuchten Verschiebungen u zu 
erhalten. Nach Galerkin wird dazu für die 
gesuchte Größe u ein Ansatz gemacht und 
das Integral des Restes muss möglichst 
klein sein.  Diesen Ansatz nennt man 
Formfunktion. (Methode des gewichteten 
Restes).

Quelle: 
Bretten, FEM für Ingenieure, Springer



Ansatzfunktion
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Wärmeleitung 

und 

Wärmeübertragung
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Wärmeleitung

Wärmeleitung durch ebene Wand
• Konvektion innen

• Wärmeleitung Wand

• Konvektion außen

ሶ𝑞 =
1

𝑅
𝑇1 − 𝑇2
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T1

d



ሶ𝑄 T2

2
1

ሶ𝑄 = Wärmestrom [W]
R = Wärmewiderstand [K/W]
 = Wärmeübergangskoeffizient [W/mK]



Wärmeleitung

Die Wärmeleitung erfolgt analog der elektrischen Leitung

 U = Rel * I  <=>  T = Rtherm * ሶ𝑄

Die einzelnen Widerstände können (bei Reihenschaltung) einfach addiert werden:
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Wärmeübertragung

Arten des Wärmeübergangs:

1.) Wärmeleitung: 𝑅𝜆 =
𝑑

𝜆∙𝐴
  (mit  = Wärmeleitfähigkeit [W/mK])

2.) Konvektion: 𝑅𝛼 =
1

𝛼∙𝐴
  (mit  = Wärmeübergangskoeffizient [W/m2K])

3.) Strahlung (nicht näher betrachtet)

In Creo Simulate erfolgt die eigentliche Berechnung nur im Inneren des 
Festkörpers, die Wärmeübertragung an das angrenzende Fluid sind nur als 
Randbedingung betrachtet.
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Wärmeübertragung

Natürliche Konvektion

Berechnung an der Tafel (für 100 x 100 mm Fläche, 
80°C Wandtemperatur)

 Wärmeübergangskoeffizient   5 [W/m2K]

 Sehr gering !!

Verbesserung mittels Strömung und dichtere Fluide:

 näherungsweise (Quelle: Wikipedia)
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Mit 
Strömungs-
geschwindigkeit 
v [m/s] 

[W/m2K]

[W/m2K]



Übung

Beispiel: Rundstab
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Heisskörper

THK

Kaltkörper

TKK

L

A, 

ሶ𝑄

Berechnen Sie den 

Wärmestrom ሶ𝑸

M = Kupfer
L = 0,3 m
 = 8 mm
A = 0,00005 m2

    = 100 W
TKK = 0°C

Wie hoch muss THK sein?
Wie hoch ist  ?

ሶ𝑄



Wärmeübertragung

Wenn man z. B. über einen massiven Kupferstab mit 8 mm Durchmesser über 
eine Länge von 300 mm eine Wärmemenge von 100 Watt übertragen, würde 
man ein treibendes Temperaturgefälle von theoretisch 1493 °C benötigen, 
ein utopischer Wert der jenseits der Schmelztemperatur von Kupfer liegt. 
Eine Heatpipe schafft den gleichen Wärmedurchsatz mit einem treibenden 
Temperaturgefälle von ca. 0,5°C
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Wärmerohre

Wärmerohre (Heat pipes)

Wärmeleitfähigkeit Kupfer

Cu = 400 W/mK

Wärmeleitfähigkeit Heat Pipe

 HP = 100.000 W/mK
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Wärmerohre

Numerische Simulation bei der Erforschung 
des lokalen Wärmeübergangs bei der 
Verdampfung aus einer Kapillarstruktur

• Sehr hohe Auflösung im Bereich der 
„Mikrozone“

• Finite Elemente < 0,1 m

• Mäßige Auflösung im Bereich der 
Makrozone

• Finite Elemente < 1 mm
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Vielen Dank für die Aufmerksamkeit !
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Impressum

Hinweis

Diese Folien sind ausschließlich für den internen Gebrauch im Rahmen der 
Lehrveranstaltung an der Frankfurt University of Applied Sciences bestimmt. Sie sind nur 
zugänglich mit Hilfe eines Passwortes, dass in der Vorlesung bekannt gegeben wird.
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