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‘ FRANKFURT

| UNIVERSITY Agenda heute

OF APPLIED SCIENCES

Ubersicht

* Einleitung / Motivation

* Numerische Programme

e Spannungszustande (Biegebalken, von Mieses)
* Vorgehen bei der Berechnung (11 Schritte)

* Matrix-Steifigkeits-Methode

e Koinzidenzmatrix

* Numerische Methoden

* Energieprinzip

 Warmeubertragung
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| UNIVERSITY Definitionen

OF APPLIED SCIENCES

Finite Elemente Eap SR
* Numerisches Verfahren ’ |
* Festigkeits- und Verformungsuntersuchungen von Festkdrpern *
* Elektrische Felder und rdumliche Temperaturverteilung ; '
* Komplexe Geometrien (analytisch praktisch nicht berechenbar)

* Unterteilung in endlich viele Teilgebiete (Teilkorper)

* Losung Uber Ansatzfunktion

e Unterschied: Integralrechnung (analytisch) mit infinitesimal kleinen Gebieten
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19.01.2026

Sicherheit

Wirtschaftlichkeit

Grinde fir FEM heute

—Vermeidung von aufwendigen Tests

—> neue Qualitédt von Entwicklungen, die nicht
testbar sind

— kiirzere Entwicklungszeiten durch
Simulation und damit Verringerung von
zeitintensiven Musterbau- und Testzyklen

—> optimierte Bauteile hinsichtlich:

* Masse

» Steifigkeit

» Spannungsverteilung Quelle:

» Schwingungsverhalten Skript Prof. Albrecht,
FEM Grundlagen, 2019
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| UNIVERSITY Generatives Design

OF APPLIED SCIENCES

Idee
I | l e Ursprung in der Architektur
* Basis ist ein erster Entwurf (CAD)

Abstraktion

-  Uber einen Algorithmus erfolgt
Algorithmus | versndertRegeln | eine Computersimulation
SR e Veranderung durch Computer
(Start-)Parameter festlegen .
¢ L * Entscheidung / Auswahl durch
| Quellcode 4--“-\}&:3:3&-9-& ----------- Gestalter KO N St ru kte ur
Quellcode A 1
Interpretierung oder Parameter ‘
durch den Computer
v
_ Quelle:
Bild Bohnacker, H., Laub, J., GroR, B., Lazzeroni, C.: Generative Gestaltung,
Simulation Bild wird vom www.generative-gestaltung.de, 2009
Gestalter bewertet
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| || Rty Beispiel Autodesk Fusion 360

OF APPLIED SCIENCES

CAD Konstruktion FEM Simulation Generatives Design
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| Ceancrurr Neue Fertigungsmethoden
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Beispiel Konzept E-Fahrzeug e.GO der RWTH Aachen

L. Ll

Kostenglinstiges GuRteil, Prototyp Computeroptimiertes Leitbauteil,
mit ,intelligenter” Struktur, nur

mittels 3D-Druck hergestellbar

Herkommliche Fertigung aus
mehreren Blechteilen. Mittels mittels 3D-Druck hergestellt

verschiedensten, aufwendigen
Arbeitsschritten hergestellt

Quelle: Eigene Aufnahmen auf der Autodesk University, Darmstadt 2019
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OF APPLIED SCIENCES

1.) Nutzung spezieller FE-Berechnungsprogramme:

* NASTRAN )

« ABAQUS ~ => Generierung des FE-Netzes: im FE-

. Programm /auf Basis importierter CAD-
ANSYS Geometriedaten

* MARC D

2.) Nutzung von CAD-Programmen mit integriertem FE-Berechnungsprogramm:

* CATIA )
* NX > => Diese Programme besitzen in der Regel
 CREO (ProEngineer) nicht den Umfang an Analysemethoden
 SOLIDWORKS und Elementtypen wie spezielle FE-

, Berechnungsprogramme
* Autodesk Fusion 360 BSPIoS
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| UNIVERSITY Definition

OF APPLIED SCIENCES

Analytischer Ansatz bei komplizierten Strukturen und
Diskontinuitaten in der Geometrie oft nicht moglich oder
sehr aufwendig.

Bei FEM:

- Gesamtstruktur in finite Elemente aufgeteilt

- An Schnittstellen (Knoten) gelten
Gleichgewichtsbedingungen

- Berechnungswerte werden an angrenzende Elemente
ubertragen

- Modularer Aufbau, Strukturen mit endlichen
Freiheitsgraden, beliebig verfeinerbar => Naherung

Die Grundgleichung der Statik lautet:
F=K u

Jedes einzelne Element kann mit dieser Gleichung beschrieben werden.

Daraus werden zunichst die Verschiebungen u und dann die Spannungen berechnet
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Beispiel Biegebalken

Analytisch bestimmte Spannung in

Abhingigkeit vom Weg x R
My(x) [ F(—x) |
o(x) = = I
O | X
I
Mit FEM bestimmte Spannung in Abhéngigkeit ~ 9(X) 4
vom Weg x bei Verwendung von: a1l
T S ———
_---_t":._ —
od2 _——
| Element ---f--- | Ax=] ag [T O
4 Elemente - 1 Ax=1//4 o44 e x
|
fiir Bereich Ax (Element ) wird u bestimmt
H S ! .
— ‘C;Bere:ch - kOHSf uelle:
Ax Skript Prof. Albrecht,
—~ O — c% F = konst FEM Grundlagen, 2019
Bereich -
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| UNIVERSITY Dehnung
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Verformung eines elastischen Stabes der Lange /

L ]
Gilt nur flr konstante
i [ ~t—Al— Querschnittsflache !
Fo B o

Verliangerung A/ als MaB fiir die GroB3e der Verformung fithrt man
in der Technik auBerdem das Verhiltnis von Lingeninderung zu
P A T 9y e Quelle:
Ausgdngsldngc CIn: Schnell, Gross, Hauger:
TM2 - Elastostatik
Al
7

£ Dehnung &€ (dimensionslos)
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Spannung-Dehnungs-Diagramm

| ‘FRANKFURT
UNIVERSITY

OF APPLIED SCIENCES
 Genormter Zugversuch zur

Ermittlung von

L
i
™ Werkstoffkennwerten
* Linearelastischer Bereich bis zur

Ry _
‘mAL
FlieRspannung o (Streckgrenze)
* Danach bleibende Verformung

R, = Streckgrenze
R,, = Zugfestigkeit

* o, auf wirkliche
Querschnittsflache Aw bezogene

Op}- |
c} ¢
1A
i
Spannnung & ist normiert auf A

;
o
£
Quelle:
Schnell, Gross, Hauger: TM2 - Elastostatik
12
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Spannungen am Volumenelement

* Realer mehrachsiger Spannungszustand

* Betrachtung aller Raumrichtungen durch
Querkontraktionszahl v (Einschnirung)
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Spannungszustande

Oy

A
yZ Txy
Tzy 14 _{E"

D-Z sz Txz

Spannungen am 3D Korper

o = Normalspannungen
T = Schubspannungen
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UNIVERSITY Spannungszusténde
OF APPLIED SCIENCES

Spannungen ”

Verschiebungen u, v, w

Dehnungen e,

Spannungen

Normalspannungen o

V.Z

Schubspannungen 1,

Yz

Zug-/Druckspannungen , }

Biegespannungen G,

Hauptspannungen G ,

Vergleichsspannungen

— Y
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Vergleichsspannung (von
Mieses) o,

o

XX 0] vy

Komplexer mehrachsiger
Spannungszustand
=> Kein Vergleich moglich

19.01.2026

fur das

Spannungszustande

Festigkeitskriterium

gleichwertig

< >

FEM — Prof. Dr. Enno Wagner

Einfacher, einachsiger
Spannungszustand

=> Vergleich mit Zugfestigkeit aus
Zugversuch
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Berechnung der von Mieses-Spannung

Beschreibung im ebenen Spannungszustand:

Beschreibung durch Biegung und Torsion:

2 2
o, :\/O'b +37,
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Vergleichsspannung

" o+o+a T - (1),
S, = 3 Trnax
P 3
> _ 2u
l’l’.Tmax S2 3 'Tmax
— M
SS (_ B 3)'Tmax
o K =V3 tg (6-(u3))
S
Z
- &
! 3
| h
0| 0,5, io c,ls, o|ls, & s
;}J"Tmax‘_
o,+ O, ! o,— O,
) 2 h:fmaxz 2

Mohrscher Spannungskreis
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Grundsatzliches Vorgehen
bei der Berechnung
mittels FEM

FEM — Prof. Dr. Enno Wagner
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1. Beispiel:

Beispiel heute

Stab mit 2 unterschiedlichen Querschnitte wird auf Zug belastet.

Geg.: Balken (mit E, A, L), einseitig eingespannt auf Zug belastet mit der Kraft F, F_ ;4 << F

Ges.: Verschiebung u am Kraftangriffspunkt, Autlagerkraft Fy 4,0,

19.01.2026

——————————

Elel:
---------- Ele 2
F
E,2A E, A I
u
—
/ 21

Fy

FEM — Prof. Dr. Enno Wagner
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1. Schritt: Aufteilen des Bauteils in Finite Elemente (FE)

Verbindungsstellen sind Knoten (K)

Element 1 Element 2 F
Itﬁuf

lager
~  Knoten 1 Knoten 2 Knoten 3

Knoten:

* Sprunghafte Anderung von Finite Elemente:
* Geometrie Innere Krafte F

e Material
e AuRere Krafte

n = Nummer Element

* AuRere Krafte m = Nummer Knoten
* Innere Krafte der Elemente F |

19.01.2026 FEM — Prof. Dr. Enno Wagner

Vorgehen

19



‘FRANKFURT
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Freischneiden
FKI FK2 1:1{3
@o— — o |
I A - > I A
@11 Fy; Elel Fy F@zz F),

19.01.2026

F,, F,
Ele2 T, E :

TIPP:

Gedanklich die Knoten in Kraftrichtung verricken und
Orientierung der resultierende Krafte einzeichnen

FEM — Prof. Dr. Enno Wagner
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Vorgehen
OF APPLIED SCIENCES

2. Schritt: Betrachtung am Element

E. ALl

Ful e | [P Die Kraft F_ _ erzeugt am
u, u, Finiten Element n die
— —

Verschiebung u,

Es herrscht Kraftegleichgewicht am Element:
F,,+F,=0

19.01.2026 FEM — Prof. Dr. Enno Wagner 21



o[- Exankruer Vorgehen

OF APPLIED SCIENCES

3. Schritt: Bestimmung der Elementen-Steifigkeit k.

Allgemeine Form der Elementen-Steifigkeit: i

4. Schritt: Betrachtung am Knoten:

FKm
Knoten m duBere Krifte z.
: . ¢ B. Lagerkrifte
Fum F{r1+l )ym

19.01.2026 FEM — Prof. Dr. Enno Wagner 22




o[- Exankruer Vorgehen

OF APPLIED SCIENCES

5. Schritt: Aufstellen der Gleichungen => Matrizenform
6. Schritt: Randbedingungen
7. Schritt: Einsetzen der Randbedingungen und l6sen der Gleichungen

8. Schritt: Streichen der Zeilen und Spalten (fir u=0)

19.01.2026 FEM — Prof. Dr. Enno Wagner 23
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9. Schritt: Berechnung der Verschiebungen
10. Schritt: Berechnung der Lager-Reaktion

11. Schritt: Ermittlung der Spannungen
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Beispiel 2

Gegeben
Balken (E, A(x), 1),

einseitig eingespannt, auf Zug belastet mit
Kraft F, (Eigengewicht wird vernachlassigt)

Gesucht

* Verschiebung u im Kraftangriffspunkt
 Auflagerkraft F,,

* maximale Spannung G,

19.01.2026 FEM — Prof. Dr. Enno Wagner 25



| ‘ FRANKFURT
UNIVERSITY
OF APPLIED SCIENCES

Analytische Betrachtung

19.01.2026

A(x) = A, (I —x/2l)

Analytische Losung: Integraltafel:

g o) F@ [

dx E(x) A(x)*E(x) ax+b

] ]
ux) = I il dx = r dx

- EA(x) OEAO(I—i)

200 ___
-2/ —21 [ F

H(l) =E1H( ——)F—EA

0

FEM — Prof. Dr. Enno Wagner

Beispiel 2

1
a

-In|ax + b|

In(05 ) F _.1 386 1
Ed, !

26
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Berechnung an der Tafel

e 1 Element
e 2 Elemente

19.01.2026

FEM — Prof. Dr. Enno Wagner
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Vergleich von Analytischer und FEM Rechnung fiir den Faktor C

- analytisch
Faktor C fiir [ u(x=1) g e
_ 1,38 =
analytisch 1.386
’ 1,37

1 Element 1,333

1,36 /
1,35

2 Elemente | | 37] Q
r A ﬁ /
w 1,34
3 Elemente 1.380 w -/
- 133
4 Elemente 1.382
* 1,32
1,31
Es ist: 1.3 ' - !
U= C*I*F/(EA) * 2 3 4

Anzahl der Elemente

19.01.2026 FEM — Prof. Dr. Enno Wagner 28
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Alternative Berechnungsmethoden

19.01.2026 FEM — Prof. Dr. Enno Wagner
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Matrix-Steifigkeits-Methode 1

Federelement o %)—’\/\/\/\/\u}\/\/\/\/\—%)
F) uy e

_____________________
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EITON e s iy Finite Elemente Methoden
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Matrix-Steifigkeits-Methode 2

2 Feder Elemente | S u R
@

u=u,=0: F=cu, F=-F F=0
u=u,=0: F=(c,+c)u,, F=-cu, F=-cu,
u,=u,=0: F=cu, F=-F, F,=0

F, u,
F, |= u, oder f=Ku (detK=0)
F, U

19.01.2026 FEM — Prof. Dr. Enno Wagner 31
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EITON e s iy Finite Elemente Methoden
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Matrix-Steifigkeits-Methode 3

Gebundenes o VWAV AN T
Syst | ] ) U3 =
ystem ‘ .
F | | c —C, 0 |[u,]
F,|=|-¢, c¢,+¢C, |—=C,|| U,
_Fa_ | 0 -C, | C, __0_
F] [ ~C u U
1| _ C, 1 }|: 1} F3 =[0 _Cz]|: 1j|
Fl [-¢ c¢+c, )y, u,
1 1
U1=[l+1]ﬁ+ilzzf u,=—F +—F, F,=—(R+F)
c, G, C, C, C,

19.01.2026 FEM — Prof. Dr. Enno Wagner 32
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Finite Elemente Methoden

Koinzidenz-Matrix
Vorgehen
1. Struktur des Bauteils
- - - - - - - """ --"=-"=-"=-"=-"=-"=-"=-== 1
| 2 I
| =0 Element 2 I
: Element |1 & ® :
| ]' 2 1
Modell fiir das Beispiel
Elementknoten: 1 Ele 1 2,1 Ele 2 2
O O O
Systemknoten: I II III
2>, -2u, U,
2. Ermitteln der Elementsteifigkeiten
Element 1
Element 2
1 2
1| k1 | 1] 2 S
i I o e e k,= 2EA/l = k;
2 | k| K 1 e
k,=EA2I=k/4
19.01.2026 FEM — Prof. Dr. Enno Wagner

Element 1

1| 2
1 k k
2 | k| k

Element 2

1

2

k/4

k/4

B

/4

k/4

33
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Koinzidenz-
Matrix e . . .
3.  Kompatibilitdt der Verschiebungen an den Knoten herstellen = Koinzidenzmatrix
Modell fiir das Beispiel
Elementknoten: 1 2,1 2
O O O
I  Ele2 I11

Systemknoten: I  Elel

Element-Knoten System-Knoten

Element 1: 1,2) auf I II
emen (1,2) au [ J & Koinzidenzmatrix

Element 2: (1,2) auf IT I1

19.01.2026 FEM — Prof. Dr. Enno Wagner
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OF APPLIED SCIENCES

Koinzidenz-Matrix

4. Aufstellen der System-Steifigkeitsmatrix [ Kuoten I I | I

. . _ . _ . FG | ul u2 | u3
Diese Matrix verkniipft die &uleren Knotenkréfte (hier 3)

mit den Verschiebungen (hier 3). Die Anzahl der Zeilen N, [ | ul
und Spalten Ny ist gleich; sie entspricht der Anzahl der
Freiheitsgrade (FG) des Systems:

hier 2 Nz=N=3FG (u;, u,, u3),

IT | u2

III | u3

19.01.2026 FEM — Prof. Dr. Enno Wagner 35
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Koinzidenzmatrix

5. Platzieren der Elementsteifigkeitsmatritzen in der Systemsteifigkeitsmatrix entsprechend
der Koinzidenzmatrix

. . Kno | I1 [11
1. Positionieren der Matrixelemente von Element 1 ten
I 3 ﬁ — FG ul 112 U3
Element 1| 1 kl | -kl I ul kl k1
i B S L2l | w2kl |k | k2
Element2 | ! | ¥ | %
2. Positionieren der emet > | o | o I | u3 -k2 k2

Matrixelemente von Element 2

19.01.2026 FEM — Prof. Dr. Enno Wagner 36
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Numerische Berechnungsmethoden

19.01.2026 FEM — Prof. Dr. Enno Wagner
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H-Element-Methode
* Auch kurz ,h-Methode” genannt
Haufig verwendete Methode (ANSYS)

grolde Anzahl von Elemente

relativ einfachen Lésungsansatzen

Nachteilig:
» feine Strukturen werden nicht gebraucht, wo keine groRen Spannungsgradienten auftreten
 Wo grolSe Spannungsgradienten auftreten, bendtigt man feine FEM-Netze
* Feine Netze bedingen einen hohen Aufwand an Netzgenerierung und Rechenleistung.

* Wo sich hohe Spannungsgradienten befinden, erhalt man erst nach der ersten Rechnung der
Struktur

19.01.2026 FEM — Prof. Dr. Enno Wagner 38



_ gl FE Methoden

OF APPLIED SCIENCES

Verfeinerung mittels h-Element-Methode
=> Steigerung der Genauigkeit durch eine Erhohung der Elementdichte

Verrundung, Kante mit 4 Elementen Verrundung, Kante mit 15 Elementen

19.01.2026 FEM — Prof. Dr. Enno Wagner 39
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H-Element-Methode

,h-Adaptivitat”
Steigerung der Genauigkeit erfolgt durch eine Erhéhung der Netzdichte
=> zusatzliche Elemente hinzugefligt werden

,r-Adaptivitat”

Erhdhung der Netzdichte, durch Verschieben der Knoten in Bereiche hoher
Spannungsgradienten;

=> Anzahl der Elemente bleibt konstant

19.01.2026 FEM — Prof. Dr. Enno Wagner 40
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p-Element-Methode

Theoretisch moglich:

Erzeugung von Elemente mit beliebig hoher Ordnung der Ansatzfunktion durch Hinzufligen
weiterer Potenzen.

Praktisches Problem:

Die Anzahl der zu berechnenden Freiheitsgrade, steigt vor allem bei 2- bzw. 3-dimensionalen
Problemen, rapide an:

Dreieckselements mit quadratischer Ansatzfunktion => sechs Freiheitsgrade,
Dreieckselement mit kubischer Ansatzfunktion => zehn Freiheitsgrade

Bei FE-Modelle mit Gber hunderttausend Elementen

=> mathematischer Aufwand nimmt exorbitante Dimensionen an

=> daher vollstandige Polynomansatze, meist nur bis zum kubischen Ansatz verwendet.

19.01.2026 FEM — Prof. Dr. Enno Wagner 41
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p-Element-Methode
Zusatzlicher Elementtyp, , p-Element” genannt
— keine fest vorgegebenen Ansatzfunktionen

= bei Bedarf in ihrem Polynomgrad variieren

—> Reduktion des mathematischen Aufwand bei
vergleichsweise hoher Qualitat der Simulation

19.01.2026 FEM — Prof. Dr. Enno Wagner

F

y

L.,

p-Element
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Creo Simulate

* Creo-Simulate benutzte Geometrie Elemente Analyse (GEA) basiert auf dem
Prinzip der sogenannten , p-Methode”

* Die Steigerung der Genauigkeit erfolgt bei der ,,p-Methode” durch das
Erhéhen der Polynomordnung der Ansatzfunktionen

e bestehendes FE-Netz bleibt erhalten
* Creo-Simulate steuert den Grad der Ansatzfunktionen automatisch

* Es werden nur diejenigen Elementkanten mit Ansatzfunktionen hoherer
Ordnung versehen, bei denen es auch tatsachlich notwendig ist

19.01.2026 FEM — Prof. Dr. Enno Wagner 43
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OF APPLIED SCIENCES

Im rechten Bild wurde die Ordnung der Ansatzfunktion der gekrimmten
Elementkante von einem Polynom dritten Grades (3 Elemente auf dem
Kreisbogen) auf ein Polynom sechsten Grades (6Elemente) erhoht

19.01.2026 FEM — Prof. Dr. Enno Wagner 44
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Hierzu verwendet Creo-Simulate zwei unterschiedliche
Konvergenzmethoden:

,Adaptive Einschritt-Konvergenz“

»Adaptive Mehrfach-Konvergenz“

19.01.2026 FEM — Prof. Dr. Enno Wagner

FE Methoden
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Adaptive Einschritt-Konvergenz (E)

e Rechenlauf in 2 Schritten beginnend mit Polynomgrad 3

e Spannungsfehler werden berechnet

* anhand dieser Fehler erfolgt neue Polynomgradverteilung

* Die Methode ist empfehlenswert

Vorteile:

* hohere Geschwindigkeit, nur zwei Berechnungsschritte
* weniger Verbrauch von Plattenplatz

e Keine unnotigen Freiheitsgrade im Modell

* Direkte, auf die Spannung bezogene Fehlerabschatzung
e Spannungsberechnung auf zwei Arten

e Singularitaten treiben nicht den lokalen Polynomgrad

19.01.2026 FEM — Prof. Dr. Enno Wagner

FE Methoden

Nachteile:

Keine Konvergenzkurve

Keine Konvergenzvorgabe

Fehlerwert schwierig zu interpretieren
Spannungsbild oft zackig und ausgefranst,
obwohl gute Ergebnisse

Symmetrische Bauteile haben ein etwas
unsymmetrisches Spannungsbild

46
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Adaptive Mehrfach-Konvergenz

* Creo 2.0 Simulate fuhrt mehrere Rechenlaufe durch

* jeweils Erhohung des Polynomgrades bis max. 9.

* Konvergenzgrad wird angegeben (Ergebnisdifferenz zweier aufeinanderfolgender
Rechenlaufe in %).

* Der Konvergenzgrad wird vorgegeben; die Berechnung schliel3t ab, wenn der
Vorgabewert erreicht ist!

Vorteile:

* Gemischte Modelle (Balken, Schalen, Tetraeder)
* Modelle mit isotropem Materialverhalten

* Angabe der Konvergenz

19.01.2026 FEM — Prof. Dr. Enno Wagner 47
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19.01.2026

Neues Thema:

Energieprinzip

FEM — Prof. Dr. Enno Wagner
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Ansatz

* Wird ein elastisches System unter Einwirkung einer aulReren Kraft F
verformt, so wird dabei eine Arbeit W verrichtet.

 Die inneren Krafte arbeiten unter dem Einfluss der Normalkraft der
aulBeren Kraft entgegen

* Die Formanderungsenergie wird hierbei als innere Energie gespeichert

* Hierfur wird das Gesamt-Potential I eingefiihrt
* Esist

11 = Ua + U. U, = potentielle (duRere) Energie der duRReren Krafte
! U, = gespeicherte innere Energie im elastisch verformten System
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Energieprinzip

Allgemeine Form der DGL:

19.01.2026

H:U£+UH:J'

V

E{TdV—iFI.Hi-I-I pdVJrI q dO
=1 vV 0

F- konzentrierte Einzellasten

p — Volumenkrifte (Eigengewicht, Fliehkrifte)
q — verteilte Oberflachenlasten

O - Obertliache

FEM — Prof. Dr. Enno Wagner
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AuRere Energie:

=-|Fds
=-Fu

U

19.01.2026

Energieprinzip

Annahmen:

- Die Kraft ist Konstant Gber den
gesamten Weg ds

- Der Weg ds ist sehr klein gegentber
der Gesamtlange |

- Es gehen nur die aulSeren
Belastungen, nicht die
Auflagerreaktionen ein

FEM — Prof. Dr. Enno Wagner

51



‘ FRANKFURT

| UNIVERSITY Energieprinzip

OF APPLIED SCIENCES

Innere Energie

Die innere Energie U, gleicht dem Produkt aus Energiedichte U; und Volumen V

7//.(’// GA
—I7 — 7. — (€ !
Ui = Ui V => Ui = fO O-xdg |2 o=Ec
q
a [F (::
T
Innere Energie : | U =0UYV it U, = IGXdSZJEBdSZ—ES =—0¢& (y-ul=¢
(Fiir den Stab) ~ =----------- 0 0 2 2
1 1E(u, —u,) 1AE , 1 2
U= -0ceV,, =—"—*Al=—"-—(u.—u, ) =—k(u, —-u
1 2 Stab 2 ]2 2 ] 1 k) 2 ( 1 k)
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Energieprinzip Potential IT
Extrema- / Variationsprinzip

Das System ist im Gleichgewicht,
wenn das Gesamtpotential I1
stationar ist => es nimmt ein
Extremum (Minimum) an

=% k u?
U,=Fu
[IT=U,+U,=%ku’—kuu=-%ku?
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Energieprinzip

;———————————

[]=Ui+ Ua

-]
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1.) Galerkin-Verfahren
Methode des gewichteten Restes
Naherungsfunktion / Gewichtungsfunktion => gleicher Ansatz
Ergebnis => Losung + Rest (Rest soll moglichst klein sein)
2.) Rayleigh-Ritz
Prinzip der virtuellen Verrickung
Variationsprinzip  => Ersatzgleichgewichtsfunktion
=> Gleichheit der inneren und aulleren Arbeit
Gleichung wird nicht direkt geldst
Losung Uber Ansatzfunktion, RB einsetzen und auflésen
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Finites Element Gesamtpotential I1

EuULERsChe
Differentialgleichung

Zugstab unter

f
1 .2
Belastung p(x) EJ.[EAU —2p(x)uldx
0

(EAu’) +p(x) =0

f

Knickstab % .{EIV” 2 _pv'?)dx (EIv")Y"+Pv" =0
0
&
Biegebalken > [Elw"’2 —-2q(x)v]dx (EIv")”"—=q(x)=0
0
¢
Balkenschwingung > (EIv"? - |:t:-2pu“-‘*..1l.r2 dx | (EIv")Y - Ephv =()
0

Zugstab unter lj [EA ur:,] dx — Fu
24 1

(EAu')'+F=0

Belastung Fy
Gesamtpotenzial [5] Quelle:
Bretten, FEM fir Ingenieure, Springer
19.01.2026
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Energieprinzip

Diese Integralgleichungen gilt es zu l6sen,
um die gesuchten Verschiebungen u zu
erhalten. Nach Galerkin wird dazu fur die
gesuchte GrolSe u ein Ansatz gemacht und
das Integral des Restes muss moglichst
klein sein. Diesen Ansatz nennt man
Formfunktion. (Methode des gewichteten
Restes).

Verformung:

Langenénderung u

Durchbiegung v+ w

Streckenlast p (x) 1n normalen Richtung
Kraft P > F
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Die Formfunktion N(x) bzw. g(x) hat die Eigenschaft, dass sie am Konten 1 eines Elementes zu 1 wird,
an allen anderen Knoten ist sie Null. Sie bestimmt den Anteil einer Komponente am Gesamtergebnis.
Sie wird ermittelt tiber eine Ansatzfunktion z.B.

H(X):iaiui(x} mit  u,(x)=x"

Die Qualitdt der Nédherungslosung hiangt davon ab, wie gut die tatsdchliche Losung durch die
Ansatzfunktion angenihert werden kann. Je hoher die Zahl der Ansatzfunktionsglieder, desto besser.
Nicht geeignete Ansatzfunktionen fallen heraus. Sie muss die Randbedingungen erfiillen. Zur
Orientierung: Die Ansatzfunktion sollte so viele Glieder haben wie Freiheitsgrade im System sind.
Hat ein Element 2 Knoten, so kann die Verschiebung maximal linear sein, bei 3 Knoten — quadratisch,
bei 4 Knoten- kubisch.

Ya Vi ¥

/ Y

L

X X X

Polynomgrad der Ansatzfunktion u (x)

2 Punkte 3 Punkte 4 Punkte
ux)=a,+a,x u(x)=a,ta,x+a;x* uXx)=a tax+ta,x*+a,x’
linear quadratisch kubisch
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Warmeleitung
und
Warmeubertragung

FEM — Prof. Dr. Enno Wagner
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Warmeleitung durch ebene Wand
* Konvektion innen
 Warmeleitung Wand
e Konvektion aulSen

1
1 =— (T, — T
q R(l 2)

Q = Warmestrom [W]
\ ) R = Warmewiderstand [K/W]
N o = Warmeubergangskoeffizient [W/mK]

19.01.2026 FEM — Prof. Dr. Enno Wagner

UNIVERSITY Wérmeleitung
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Die Warmeleitung erfolgt analog der elektrischen Leitung
AU=R, * | <=> AT =Ry ¥ Q

Die einzelnen Widerstande konnen (bei Reihenschaltung) einfach addiert werden:

CdQ T, — T, n-T,  T,—T

_dt_Hll_jl—kﬁ—i‘ﬁ_}{{ﬂ—l_fﬂ)\—l_ﬁcxﬂ_ Hkr

)
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Arten des Warmeubergangs:

1.) Warmeleitung: R; = /%4 (mit A = Warmeleitfahigkeit [W/mK])
2.) Konvektion: R, = O%A (mit oo = Warmetbergangskoeffizient [W/m?K])
3.) Strahlung (nicht naher betrachtet)

In Creo Simulate erfolgt die eigentliche Berechnung nur im Inneren des

Festkorpers, die Warmeulbertragung an das angrenzende Fluid sind nur als
Randbedingung betrachtet.
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Naturliche Konvektion

Berechnung an der Tafel (fiir 100 x 100 mm Flache,
80°C Wandtemperatur)

— Warmeibergangskoeffizient o ~ 5 [W/m?K]
= Sehr gering !!

Verbesserung mittels Stromung und dichtere Fluide:

naherungsweise (Quelle: Wikipedia)

Mit

¢« Medium Luft: o« = . W/m2K Stromungs-
« 12 ﬁ+2 W/ geschwindigkeit

« Medium Wasser: a = 2100 - /v + 580 [W/m*k] v [m/s]
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Beispiel: Rundstab

Heisskorper

Q' Kaltkorper
Thk 2 Ty

19.01.2026 FEM — Prof. Dr. Enno Wagner

Ubung

Berechnen Sie den
Warmestrom Q

M = Kupfer
L=0,3m
=8 mm

A = 0,00005 m?

Q=100 W
T =0°C

Wie hoch muss T, sein?
Wie hoch ist a ?
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Wenn man z. B. Uber einen massiven Kupferstab mit 8 mm Durchmesser uber
eine Lange von 300 mm eine Warmemenge von 100 Watt Ubertragen, wirde
man ein treibendes Temperaturgefadlle von theoretisch 1493 °C bendétigen,
ein utopischer Wert der jenseits der Schmelztemperatur von Kupfer liegt.
Eine Heatpipe schafft den gleichen Warmedurchsatz mit einem treibenden
Temperaturgefalle von ca. 0,5°C
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Warmerohre (Heat pipes)

Warmeleitfahigkeit Kupfer
A, =400 W/mK

Warmeleitfahigkeit Heat Pipe
Ayp = 100.000 W/mK

19.01.2026
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Warmerohre

Dampfstromung

Fliissigkeitsstromung
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Numerische Simulation bei der Erforschung
des lokalen Warmelibergangs bei der
Verdampfung aus einer Kapillarstruktur

* Sehr hohe Auflosung im Bereich der
,Mikrozone”

* Finite Elemente < 0,1 um

* MaRige Auflosung im Bereich der
Makrozone

e Finite Elemente <1 mm

19.01.2026 FEM — Prof. Dr. Enno Wagner

Warmerohre

e
L
RN
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Vielen Dank fiir die Aufmerksamkeit !
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Hinweis

Diese Folien sind ausschliefllich fiir den internen Gebrauch im Rahmen der
Lehrveranstaltung an der Frankfurt University of Applied Sciences bestimmt. Sie sind nur
zuganglich mit Hilfe eines Passwortes, dass in der Vorlesung bekannt gegeben wird.
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