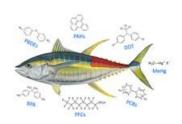
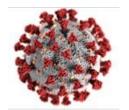
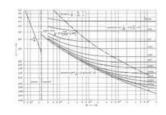
Bachelor Infrastruktur


Vorlesung und Übung: Naturwissenschaftliche Grundlagen


2.1 Einführung Chemie, Gemische, Atome

Prof. Dr. Welker, Frankfurt University of Applied Sciences



Naturwissenschaftliche Grundlagen

Chemie

2.1 Grundlagen Chemie

Einführung

- Gemische
- Verbindungen
- Elemente
- Phasen

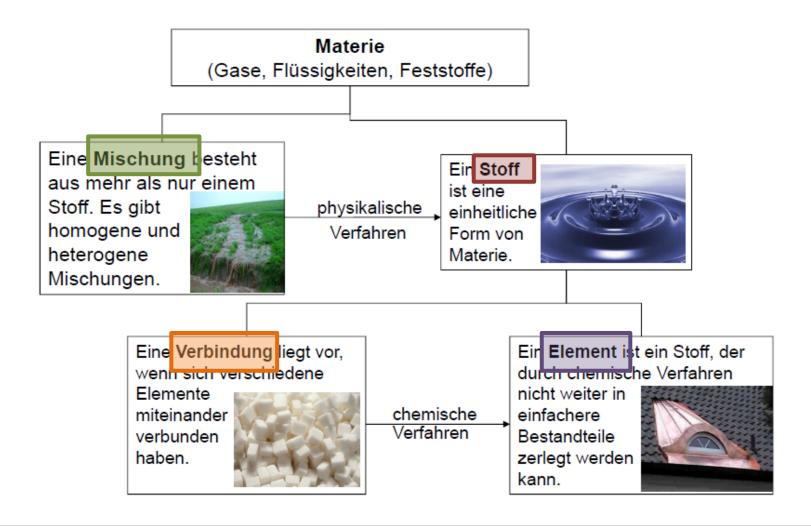
Atome

- Modelle
- Periodensystem

Einleitung

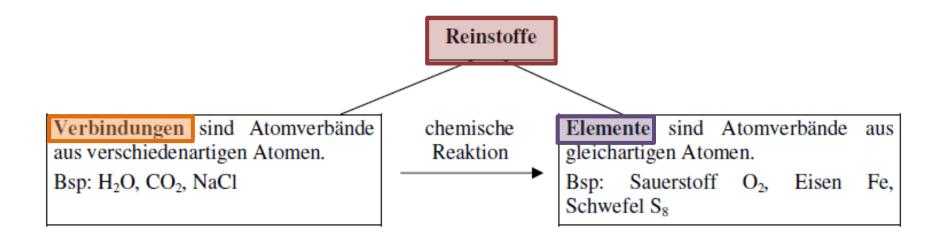
Chemie: Lehre von Stoffen und Stoffveränderungen

- Beschreibung von Stoffen und ihren Eigenschaften
 - physikalische Eigenschaften (Aggregatzustände, Dichte..)
 - chemische Eigenschaften
- Analyse von Stoffen = Identifikation von Stoffen
- Synthese von Stoffen = Herstellung neuer Stoffe mittels chemischen Reaktionen


wichtig für Umwelt- und Bauingenieurwesen:

- Baumaterialien (verschiedene Verbindungen, Korrosion und ihre Vermeidung)
- Wasseraufbereitung (Trinkwasseraufbereitung, Regenwasserbehandlung und Abwasserreinigung)

Gemische, Elemente, Verbindungen

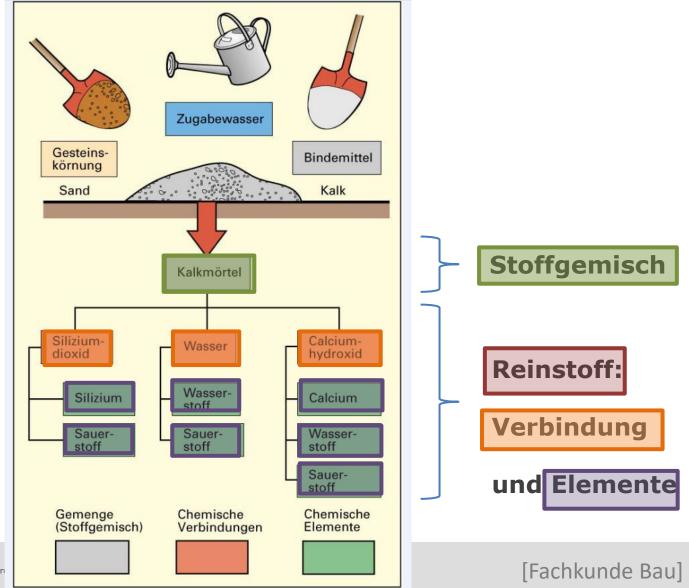


Gemische

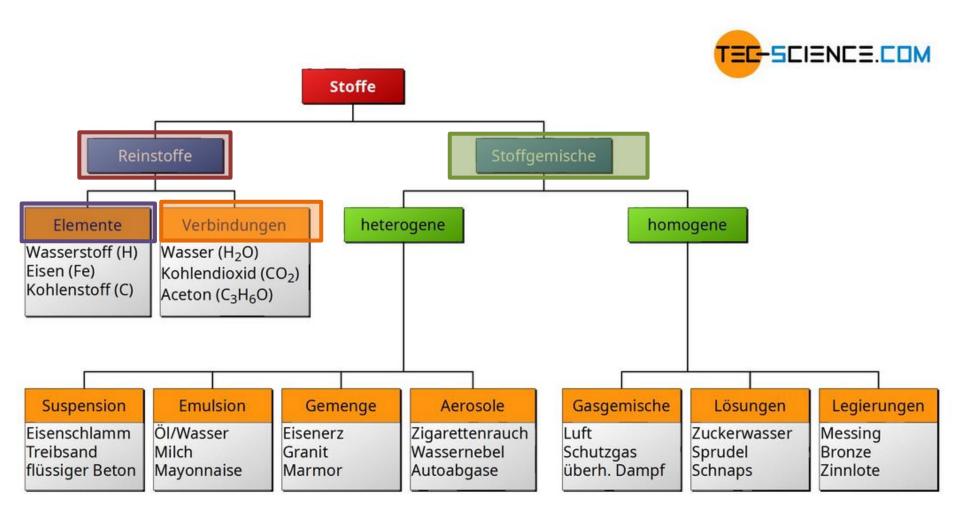
Phasengrenzen bestimmen in vielen Fällen die Geschwindigkeit von Stoffumwandlungen (Lösen von Zucker in Wasser, Gasexplosion).

Elemente, Verbindungen

Typische chemische Trennmethoden sind z.B.:


Methode:	chemische Reaktion:
Elektrolyse	Zersetzung eines Stoffes unter Einwirkung von elektrischem Strom
Thermolyse	Zersetzung eines Stoffes unter Einwirkung von hoher Temperatur
Photolyse	Zersetzung eines Stoffes unter Einwirkung von Licht

Tab. 3: Chemische Trennmethoden

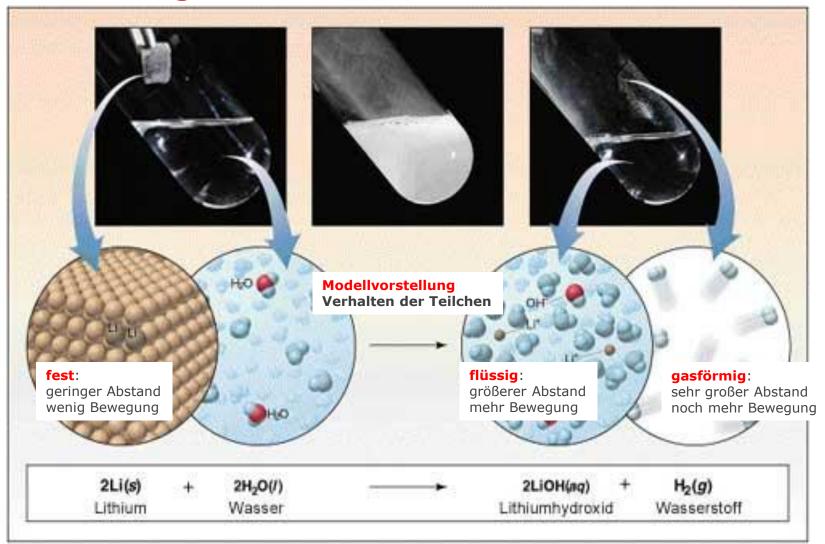

Gemische, Verbindungen

Mischung	Verbindung
- Die Bestandteile können mit physikalischen Verfahren getrennt werden	- Die Bestandteile können mit physikalischen Verfahren nicht getrennt werden
- Die Zusammensetzung kann variieren	- Die Zusammensetzung ist festgelegt
- Die Eigenschaften der Mischung ähneln denen ihrer Bestandteile	- Die Eigenschaften können sich deutlich von denen der die Verbindung aufbauenden Elemente unterscheiden
- Bei der Herstellung einer Mischung wird in den meisten Fällen weder Wärme freigesetzt noch aufgenommen	- Bei der Herstellung einer Verbindung werden meist grössere Wärmemengen freigesetzt

Gemische, Elemente, Verbindungen

Gemische in verschiedenen Phasen

Gemische in verschiedenen Phasen


Gemisch	Phasen ²	Bezeichnung	Beispiele
heterogen	(s) in (<u>s</u>)	Gemenge (Feststoffgemisch)	Granit, Gartenerde
	(g) in (<u>s</u>)	Schaum	Schaumstoff
	(s) in (<u>1</u>)	Suspension	Tusche, Tonteilchen im Wasser
	(l) in (<u>1</u>)	Emulsion	Salatsauce (Öl-Essig), Milch
	(g) in (<u>1</u>)	Schaum	Schlagrahm, Seifenschaum
	(s) in (g)	Rauch	Staubwolke
	(l) in (g)	Nebel	Spray, Rauchmaschine
	(s, 1) in (<u>g</u>)	Aerosol	Zigarettenrauch, Dieselabgase
homogen	(s)	Legierung ³	Messing (Cu,Zn), Bronze (Cu, Sn), Amalgam (Hg u.a. Metalle)
	(1)	Lösung	Meerwasser, Wein
	(g)	Gasgemisch	Luft (21% O ₂ , 78% N ₂ , 1% Edelgase)

meisten Alltagsstoffe: keine reinen Stoffe sondern Gemische (heterogen oder homogen)

²Phasen: s: solid (fest); I: liquid (flüssig), g: gaseous (gasförmig)

Verbindungen Elemente in verschiedenen Phasen

Gemische, Elemente, Verbindungen

Stoffe

- **Elemente** (oft Verbände aus einer Atomsorte: H₂)
- **Verbindungen** (Moleküle aus verschiedenen Atomen: H₂O)

Gemische

- Heterogen (i.d.R. mehrere Phasen; Gemenge, Rauch....)
- Homogen (i.d.R. eine Phase; Lösung, Legierung...)

Atome, Aufbau

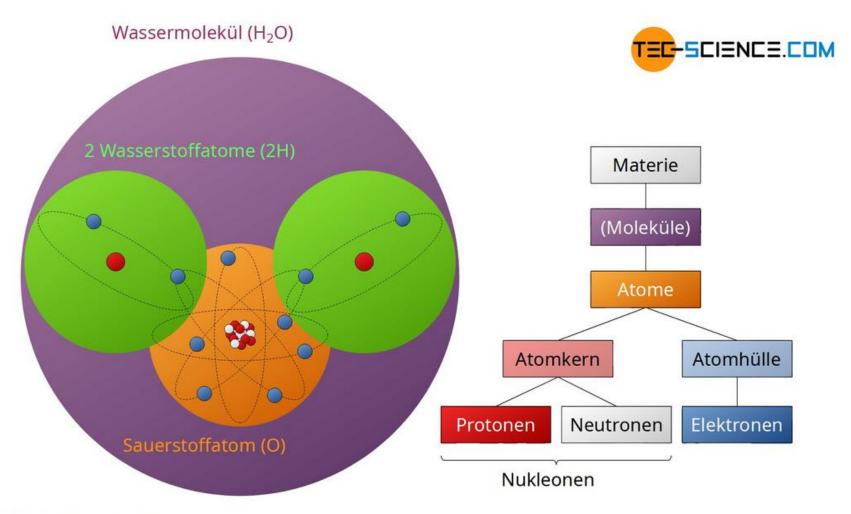


Abbildung: Aufbau der Materie

Atome, Aufbau

Bausteine der Atome: Elementarteilchen

Elementarteilchen	Abkürzung	Masse	el. Ladung
Proton	p ⁺	1.0073 u	+
Neutron	n	1.0087 u	0 (neutral)
Elektron	e ⁻	0.0005 u	-

Atomkern:

- positiv geladene Protonen p+ (hohe Masse)
- ungeladene Neutronen n (hohe Masse)

• Elektronenhülle:

negativ geladene Elektronen e (sehr geringe Masse)

Atome, Aufbau

Experiment **Rutherford**:

- Beschuss Goldfolie mit Protonen und Neutronen → Großteil passiert die Goldfolie
- Atomkern (sehr hohe Masse, aber sehr geringe Größe)
- Elektronenhülle (sehr geringe Masse, aber sehr große Größe)

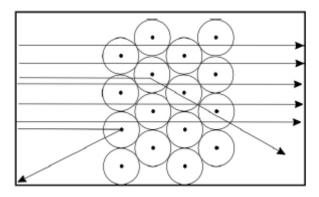
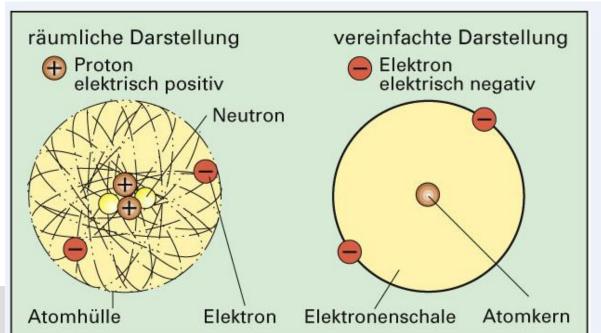


Abb. 7: Rutherford's Streuversuch


	Ladung	Elementarteilchen	Masse	Grösse
Atomkern	positiv	Nukleonen: p+, n	> 99.9%	$\varnothing \approx 10^{-15} \mathrm{m}$
Elektronenhülle	negativ	e ⁻	< 0.1%	$\varnothing \approx 10^{-10} \mathrm{m}$

Tab. 6: Atomkern und Atomhülle

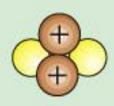
Atome, Aufbau

- Atomkern, bestehend aus Nukleonen:
 - positiv geladene Protonen
 (bestimmend f\u00fcr die Festlegung eines Elements)
 - ungeladene Neutronen, i.d.R. gleiche Anzahl wie die Protonen (bestimmend für die Festlegung der Isotope)
- Elektronenhülle, bestehend aus negativ geladenen Elektronen (bestimmend für die Eigenschaften eines Elementes)

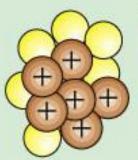
Heliumatom

Atome, Beispiele Atomkern

Heliumatom


Kohlenstoffatom

Proton elektrisch positiv


Neutron elektrisch neutral

Kern eines Heliumatoms

- 2 Protonen
- 2 Neutronen

4 Nukleonen

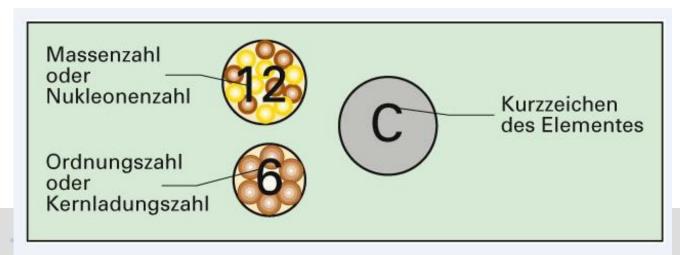
Kern eines Kohlenstoffatoms

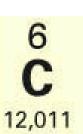
- 6 Protonen
- 6 Neutronen

12 Nukleonen

Atome

Ordnungszahl/ Kernladungszahl: Zahl der Protonen


Massenzahl: Zahl der Neutronen und Protonen (Nukleonen)


Kohlenstoff:

- 12 C (98,89 %, 6 Neutronen und 6 Protonen)
- 13 C (1,11 %, 7 Neutronen und 6 Protonen)
- 14 C (Spuren, radioaktiv, 8 Neutronen und 6 Protonen)

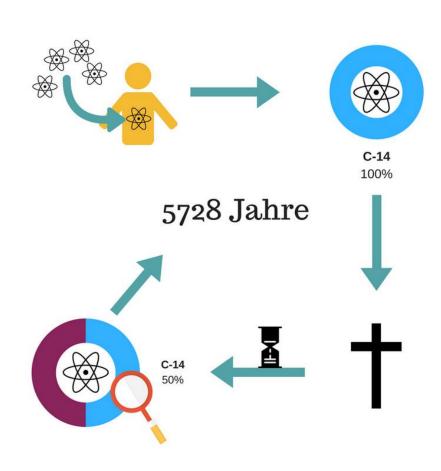
→ Berechnung resultierende **mittlere Atommasse (Massenzahl)** durch Berücksichtigung relativer Massen und Häufigkeiten seiner natürlichen

Isotope: 12,011; abgerundet 12

Atome, Isotope

Isotope = Atome eines Elements, die sich einzig in ihrer **Neutronenzahl (Masse) unterscheiden, Protonenzahl** bleibt gleich.

chemisches Verhalten vorwiegend bestimmt durch **Elektronen** → Isotope eines Elements haben weitgehend gleiche chemische Eigenschaften.

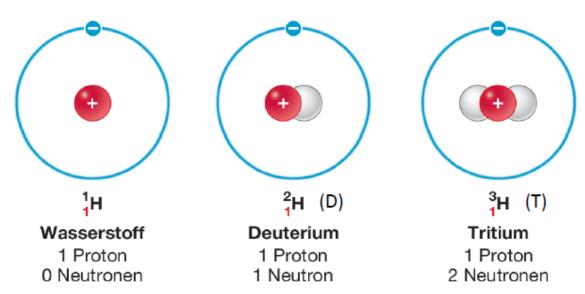

Gemische verschiedener Isotope

- Kohlenstoff: "normales" C-12 (98,89%, 6 Neutronen), C-13 (1,11%, 7 Neutronen) und C-14 (Spuren, radioaktiv, 8 Neutronen)
- Elemente ohne Isotope: F, Na, Al, Au...

Atome, Isotope

Anwendung C14: Altersbestimmung mit der Radiocarbonmethode

- Lebender Organismus: Aufnahme/Abgabe Verhältnis C14/ C12 konstant
- Toter Organismus: keine weitere Aufnahme vom C14, dieses zerfällt exponentiell mit der Zeit
- Messung Verhältnis C14/ C12 in unbekannter Probe
- Rückrechnung Alter



Atome, Isotope Wasserstoff

Tab. 7 zeigt die Isotope des Elements Wasserstoff (H).

Schreibweise	¹ H oder H-1	² H, H-2oder D	³ H, H-3 oder T
Name	normaler Wasserstoff	schwerer Wasserstoff (Deuterium)	überschwerer Wasserstoff (Tritium)
Masse	1 u	2 u	3 u
Elementarteilchen	1 p ⁺ , 1 e ⁻	1 p ⁺ , 1 n, 1 e ⁻	1 p ⁺ , 2 n, 1 e ⁻
Vorkommen	99.99%	0.01 %	radioaktiv ($T_{1/2} = 12 \text{ y}$)

- Wasserstoff
- Helium
- Kohlenstoff

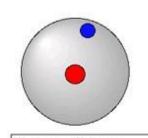
Tabel	lle 1:	Perio	densy	stem	der E	leme	nte (gekür	zt)									
Periode		upt- open				N	ebeng	gruppe	en					Н	auptg	ruppe	n	
	1	Ш	IIIa	IVa	Va	VIa	VIIa		VIIIa		la	lla	III	IV	V	VI	VII	VIII
1	1 H 1,008		Bez	eichnu		ıngsza	hl				talle htmet	ماله						2 He
2	3 Li 6,939	4 Be 9,012	8 C 15,9		Kurzze	eichen		no / N	1assen	H al	bmeta		5 B 10,811	6 C 12,011	7 N 14,007	8 O 15,999	9 F 12,998	10 Ne 20,183
3	11 Na 22,989	12 Mg _{24,312}	* al						ind rac		v		13 AI 26,982	14 Si 28,086	15 P 30,974	16 S 32,064	17 CI 35,492	18 Ar 39,948
4	19 K 39,102	20 Ca	21 Sc 44,956	22 Ti 47,9	23 V 50,942	24 Cr 51,996	25 Mn 54,938	26 Fe 55,847	27 Co 58,933	28 Ni 58,71	29 Cu 63,54	30 Zn 65,37	31 Ga 69,72	32 Ge _{72,59}	33 As 74,92	34 Se _{78,96}	35 Br _{79,909}	36 Kr 83,80
5	37 Rb 85,47	38 Sr 87,62	39 Y 89,905	40 Zr 91,22	41 Nb 92,906	42 Mo 95,94	43 Tc	44 Ru 101,07	45 Rh 102,905	46 Pd 106,04	47 Ag	48 Cd	49 In	50 Sn 118,69	51 Sb	52 Te	53 J	54 Xe 131,30
6	55 Cs 132,90	56 Ba 137,34	57 La	72 Hf _{178,49}	73 Ta _{180,948}	74 W 183,948	75 Re 186,2	76 Os 190,2	77 Ir	78 Pt 195,09	79 Au 196,967	80 Hg _{200,59}	81 TI 204,37	82 Pb 207,192	83* Bi 208,98	84* Po 210	85* At	86* Rn 222
7	87* Fr	88* Ra	89* Ac	104* Rf ₂₅₈	105* Db	106* Sg	107* Bh	108* Hs	109* Mt									

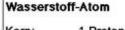
- Wasserstoff
- Lithium
- Helium
- Neon

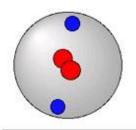
Tabel	le 1:	Perio	densy	stem	der E	leme	nte (gekür	zt)									
Periode		upt- open	Nebengruppen							Hauptgruppen								
	1	II	IIIa	IVa	Va	VIa	VIIa		VIIIa		la	lla	Ш	IV	٧	VI	VII	VIII
1	1 H 1,008		Bez	Metalle F										2 He				
2	3 Li 6,939	4 Be _{9,012}	8 C 15,9		Kurzze			20 /- N	1assen	Hal	bmeta		5 B 10,811	6 C 12,011	7 N 14,007	8 O 15,999	9 F 12,998	10 Ne 20,183
3	11 Na 22,989	12 Mg _{24,312}	* al						ind rac		v		13 AI 26,982	14 Si 28,086	15 P 30,974	16 S 32,064	17 CI 35,492	18 Ar 39,948
4	19 K 39,102	20 Ca	21 Sc 44,956	22 Ti 47,9	23 V 50,942	24 Cr 51,996	25 Mn 54,938	26 Fe 55,847	27 Co 58,933	28 Ni 58,71	29 Cu 63,54	30 Zn 65,37	31 Ga 69,72	32 Ge _{72,59}	33 As 74,92	34 Se _{78,96}	35 Br _{79,909}	36 Kr 83,80
5	37 Rb 85,47	38 Sr 87,62	39 Y 89,905	40 Zr 91,22	41 Nb 92,906	42 Mo 95,94	43 Tc	44 Ru 101,07	45 Rh 102,905	46 Pd 106,04	47 Ag	48 Cd 112,40	49 In	50 Sn 118,69	51 Sb	52 Te	53 J	54 Xe 131,30
6	55 Cs 132,90	56 Ba 137,34	57 La	72 Hf 178,49	73 Ta _{180,948}	74 W 183,948	75 Re 186,2	76 Os 190,2	77 Ir	78 Pt 195,09	79 Au 196,967	80 Hg	81 TI 204,37	82 Pb 207,192	83* Bi _{208,98}	84* Po 210	85* At	86* Rn 222
7	87* Fr 223	88* Ra	89* Ac	104* Rf ₂₅₈	105* Db	106* Sg	107* Bh	108* Hs	109* Mt									

Atome, Modelle

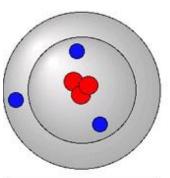
- Elektronen: Schalenmodell nach Bohr (Bewegung auf Schalen in definierten Abständen zum Atomkern → Fliehkraft verhindert, dass Elektronen zum positiven Atomkern wandern)
- Jede Schale kann max. 2 x n² Elektronen aufnehmen
 - 1. Schale (K): n=1 max. Elektr. = 2
 - 2. Schale (L): n=2 max. Elektr. = 8
 - 3. Schale (M): n=3 max. Elektr. = 18


. . .

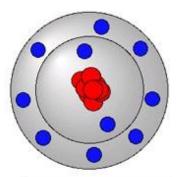

Valenzelektronen/ Außenelektronen:
 Elektronen auf der äußersten Schale


Atome, Modelle

- Valenzelektronen/ Außenelektronen:
 Elektronen auf der äußersten Schale
- diese sind in einer Gruppe (Spalte) im Periodensystem gleich
- bedingen ähnliche chemische Eigenschaften der Elemente
- mit jeder neue Periode (Zeile) kommt eine Schale dazu
- Lithium und Neon stehen im Unterschied zu Wasserstoff und Helium in der 2. Periode → L-Schale kommt dazu



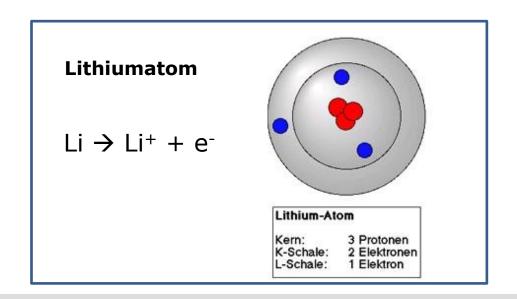
Kern: 1 Proton K-Schale: 1 Elektron


Helium-Atom

Kern: 2 Protonen K-Schale: 2 Elektronen

Lithium-Atom

Kern: 3 Protonen K-Schale: 2 Elektroner L-Schale: 1 Elektron



Neon-Atom

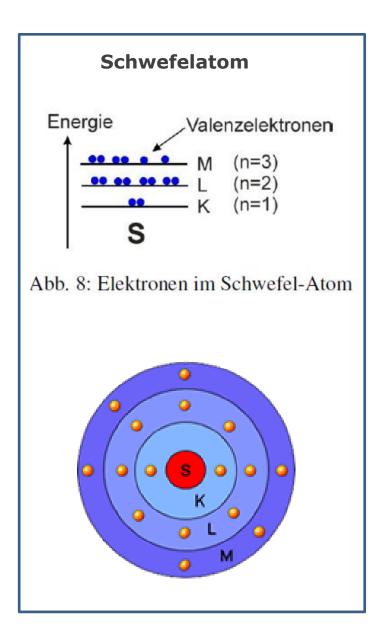
Kern: 10 Protonen K-Schale: 2 Elektronen L-Schale: 8 Elektronen

Atome, Modelle

- Valenzelektronen/ Außenelektronen: Elektronen auf der äußersten Schale
- Ionisierung: Elektron verlässt Atom → negatives Elektron und positiver Rest

- Schwefel
- Sauerstoff

Tabel	lle 1:	Perio	densy	stem	der E	leme	nte (gekür	zt)									
Periode		upt- open	Nebengruppen								Hauptgruppen							
	1	Ш	IIIa	IVa	Va	VIa	VIIa		VIIIa		la	lla	Ш	IV	V	VI	VII	VIII
1	1 H 1,008		Bez	eichnu			h.I				talle htmet	alla						2 He
2	3 Li 6,939	4 Be _{9,012}	8 C 15,9		Ordnu Kurzze	eichen		20 / N	1assen	Hal	bmeta		5 B 10,811	6 C	7 N 14,007	8 O 15,999	9 F 12,998	10 Ne 20,183
3	11 Na 22,989	12 Mg _{24,312}	* al						ind rac		v		13 AI 26,982	14 Si _{28,086}	15 P 30,974	16 S 32.064	17 CI 35,492	18 Ar 39,948
4	19 K 39,102	20 Ca	21 Sc 44,956	22 Ti 47,9	23 V 50,942	24 Cr 51,996	25 Mn 54,938	26 Fe 55,847	27 Co 58,933	28 Ni 58,71	29 Cu 63,54	30 Zn 65,37	31 Ga 69,72	32 Ge _{72,59}	33 As 74,92	34 Se _{78,96}	35 Br _{79,909}	36 Kr 83,80
5	37 Rb 85,47	38 Sr 87,62	39 Y 89,905	40 Zr 91,22	41 Nb 92,906	42 Mo 95,94	43 Tc	44 Ru 101,07	45 Rh 102,905	46 Pd 106,04	47 Ag	48 Cd 112,40	49 In	50 Sn 118,69	51 Sb	52 Te	53 J	54 Xe 131,30
6	55 Cs 132,90	56 Ba 137,34	57 La 138,91	72 Hf _{178,49}	73 Ta _{180,948}	74 W 183,948	75 Re 186,2	76 Os 190,2	77 Ir 192,2	78 Pt 195,09	79 Au 196,967	80 Hg _{200,59}	81 TI 204,37	82 Pb 207,192	83* Bi 208,98	84* Po 210	85* At	86* Rn 222
7	87* Fr	88* Ra	89* Ac	104* Rf ₂₅₈	105* Db	106* Sg	107* Bh	108* Hs	109* Mt					>				

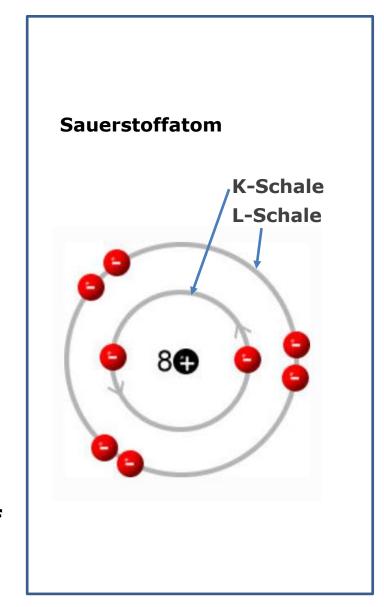


Atome, Modelle

Valenzelektronen/ Außenelektronen:
 Elektronen auf der äußersten Schale

Schwefel:

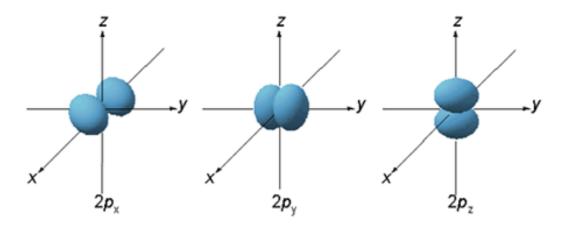
- 3. Periode → 3 Schalen
- K-Schale mit 2 Elektronen und L-Schale mit 8 Elektronen vollständig gefüllt
- Die M-Schale ist mit 6 Elektronen nicht vollständig gefüllt (maximal wäre für 8 Elektronen Platz)



Atome, Modelle

• Was bedeutet das für Sauerstoff mit 8 Elektronen?

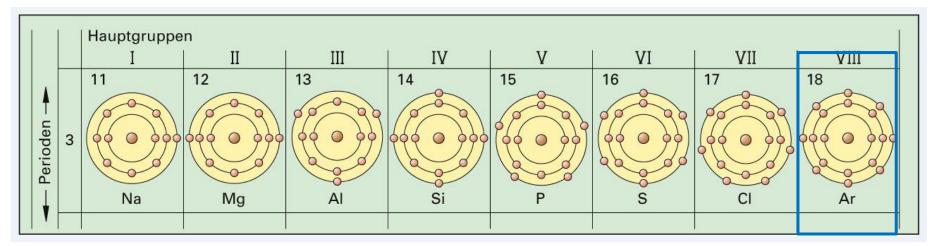
Sauerstoff


- 2. Periode → nur 2 Schalen
- K-Schale wäre mit 2 Elektronen vollständig gefüllt; die L-Schale ist mit 6 Elektronen nicht vollständig gefüllt (maximal möglich wären 8 Elektronen)
- gleiche Anzahl an Außenelektronen wie Schwefel (n=6)
- → beide Elemente Schwefel und Sauerstoff stehen in einer Hauptgruppe und haben ähnliche Eigenschaften

Atome, Modelle

Orbitalmodell nach Schrödinger

- Elektronen besitzen sowohl Teilchen- als auch Wellencharakter (Welle-Teilchen-Dualismus)
- Orbital = Raum, in dem sich ein Elektron mit größter Wahrscheinlichkeit aufhält


- 3. Periode (M-Schale)
- Argon (8. Hauptgruppe, Edelgase)

Tabel	le 1:	Perio	densy	stem	der E	Eleme	nte (gekür	zt)									
Periode	Hau grup	upt- open				N	ebeng	gruppe	en					Н	auptg	ruppe	n	
	1	II	III a	IVa	Va	VIa	VIIa		VIIIa		la	lla	Ш	IV	V	VI	VII	VIII
1	1 H 1,008		Bez		ingen: Ordnu		hl				talle htmet	ماله						2 He
2	3 Li 6,939	4 Be _{9,012}	8 0 15,9	-	Kurzze	eichen	nmace	20 /~ N		Hal	bmeta		5 B 10,811	6 C 12,011	7 N 14,007	8 O 15,999	9 F 12,998	10 Ne 20,183
3	11 Na 22,989	12 Mg 24,312	* al	le Isote	ope di		rundst		ind rac	lioakti	v		13 AI 26,982	14 Si _{28,086}	15 P 30,974	16 S 32,064	17 CI 35,492	18 Ar 39,948
4	19 K 39,102	20 Ca	21 Sc 44,956	22 Ti 47,9	23 V 50,942	24 Cr 51,996	25 Mn 54,938	26 Fe 55,847	27 Co 58,933	28 Ni 58,71	29 Cu 63,54	30 Zn 65,37	31 Ga 69,72	32 Ge _{72,59}	33 As 74,92	34 Se _{78,96}	35 Br _{79,909}	36 Kr 83,80
5	37 Rb 85,47	38 Sr 87,62	39 Y 89,905	40 Zr 91,22	41 Nb 92,906	42 Mo 95,94	43 Tc	44 Ru 101,07	45 Rh 102,905	46 Pd 106,04	47 Ag	48 Cd 112,40	49 In	50 Sn 118,69	51 Sb	52 Te	53 J	54 Xe 131,30
6	55 Cs 132,90	56 Ba	57 La	72 Hf 178,49	73 Ta _{180,948}	74 W 183,948	75 Re _{186,2}	76 Os 190,2	77 Ir 192,2	78 Pt 195,09	79 Au 196,967	80 Hg _{200,59}	81 TI 204,37	82 Pb 207,192	83* Bi 208,98	84* Po 210	85* At	86* Rn
7	87* Fr	88* Ra 226,05	89* Ac	75 % Metalle 104* 105* 106* 107* 108* 109* 75 % Metalle 10 % Halbmetalle														

Atome, Oktettregel

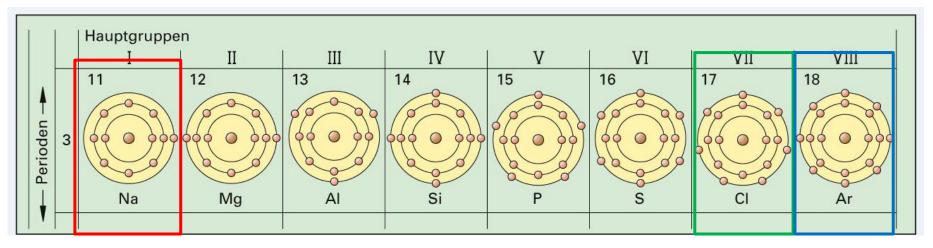
[Fachkunde Bau]

Elemente der 3. Periode haben 3 Schalen (K-, L- und M-Schale): Platz für max. 18 Elektronen (2 Elektronen in K-Schale, 8 in L-Schale und 8 Außenelektronen in der M-Schale)

Zahl der Außenelektronen nimmt von links (Na: 1) nach rechts (Ar: 8) zu!

Alle Atome sind bestrebt, eine **Edelgas-Konfiguration** durch Aufnahme oder Abgabe der **Elektronen** zu erreichen (**Oktettregel**)

Edelgase (z.B. Argon): Oktettregel erfüllt (8 Außenelektronen, Ausnahme Helium (2 Außenelektronen) → sehr stabil



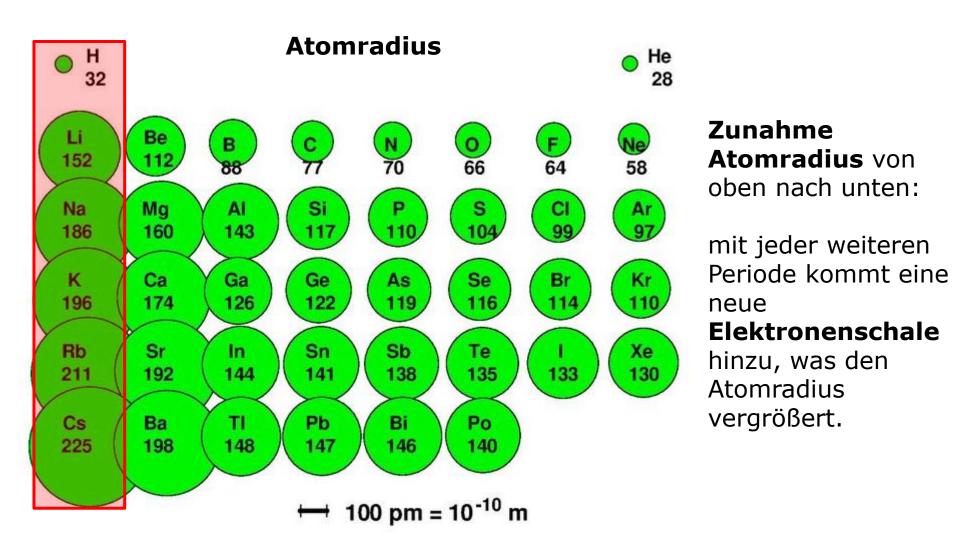
- Natrium (1. Hauptgruppe, Alkalimetalle)
- Chlor (7. Hauptgruppe, Halogene)

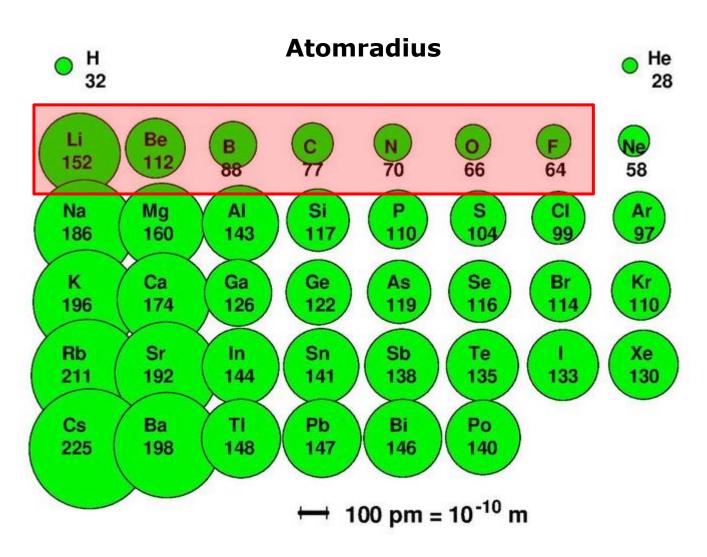
Tabel	lle 1:	Perio	densy	stem	der E	leme	nte (gekür	zt)									
Periode		upt- open				N	ebeng	gruppe	en					Н	auptg	ruppe	n	
	1	Ш	III a	IVa	Va	Vla	VIIa		VIIIa		la	lla	III	IV	V	VI	VII	VIII
1	1 H 1,008		Bez		ingen:		ы				talle htmet	مااه						2 He
2	3 Li 6,939	4 Be _{9,012}	8 C 15,9		Ordnu Kurzze	eichen		/ N	1assen	Hal	bmeta		5 B 10,811	6 C 12,011	7 N 14,007	8 O 15,999	9 F 12,998	10 Ne 20,183
3	11 Na 22,989	12 Mg _{24,312}	* al						ind rac		,		13 AI 26,982	14 Si 28,086	15 P 30,974	16 S 32,064	17 CI 35,492	18 Ar 39,948
4	19 K 39,102	20 Ca	21 Sc 44,956	22 Ti 47,9	23 V 50,942	24 Cr 51,996	25 Mn 54,938	26 Fe 55,847	27 Co 58,933	28 Ni 58,71	29 Cu 63,54	30 Zn 65,37	31 Ga _{69,72}	32 Ge _{72,59}	33 As 74,92	34 Se _{78,96}	35 Br 79,909	36 Kr 83,80
5	37 Rb 85,47	38 Sr 87,62	39 Y 89,905	40 Zr 91,22	41 Nb 92,906	42 Mo 95,94	43 Tc	44 Ru 101,07	45 Rh 102,905	46 Pd 106,04	47 Ag 107,87	48 Cd	49 In	50 Sn 118,69	51 Sb	52 Te	53 J	54 Xe 131,30
6	55 Cs 132,90	56 Ba 137,34	57 La	72 Hf 178,49	73 Ta _{180,948}	74 W 183,948	75 Re 186,2	76 Os 190,2	77 Ir	78 Pt 195,09	79 Au 196,967	80 Hg _{200,59}	81 TI 204,37	82 Pb 207,192	83* Bi _{208,98}	84* Po	85* At	86* Rn
7	87* Fr	88* Ra	89* Ac	104* Rf ₂₅₈	105* Db	106* Sg	107* Bh	108* Hs	109* Mt					H				

Atome, Oktettregel

[Fachkunde Bau]

Edelgase (z.B. Argon) Oktettregel erfüllt (8 Außenelektronen, Ausnahme Helium (2 Außenelekronen) → sehr stabil


Alkalimetalle (z.B. Natrium) geben Elektronen leicht ab, siehe auch Lithium


Nichtmetalle (z.B. Chlor) nehmen Elektronen leicht auf

→ beide Atome sind reaktionsfreudig mit anderen Atomen

Tabelle 2.6 Änderung wichtiger Eigenschaften von Hauptgruppenelementen in einer Periode

Eigenschaft								
	I	II	III	IV	V	VI	VII	VIII Edelgase
Valenzelektronen- konfiguration	ns ¹	ns ²	ns ² np ¹	ns ² np ²	ns ² np ³	ns²np⁴	ns²np⁵	
Valenzelektronen	1	2	3	4	5	6	7	8
Atomradius								
Ionisierungsenergie	_							
Tendenz zur Bildung von Kationen								
Tendenz zur Bildung von Anionen								
Metallcharakter/ Basizität der Oxide								
Nichtmetallcharakter/ Acidität der Oxide								

Abnahme Atomradius von links nach rechts:

Die Anzahl der **Protonen** im Kern steigt, wodurch die positive Ladung zunimmt. Diese stärkere Kernladung zieht die Elektronen stärker an, was den Atomradius verkleinert.

Stoffklasse	Typische Eigenschaften	Atomarer Aufbau	Bindungsart	Beispiele
Flüchtige Stoffe (Moleküle, Edelgase)	 rel. tiefe Schmelz- und Siedetem- peratur (<400°C) nicht elektr. leitend relativ weich 	Molekül = abgeschloss- ener Atomverband aus Nichtmetallatomen Edelgase kommen atomar vor	Atombindung = gemeinsames Elektronenpaar zw. neutralen Atomen	Kohlenstoff- dioxid (CO ₂), Iod I ₂), Ethanol (CH ₃ CH ₂ OH)
Salzartige Stoffe (Salze)	hohe Schmelz- und Siedetemperatur im flüssigen oder gelösten Zustand elektrisch leitend als Feststoff hart und spröde	Salze bestehen aus Ionen (pos. Kationen, neg. Anionen), die ein "unendlich" grosses, 3- dimensionales Gitter bilden	Ionenbindung = elektrostatische Anziehung zwischen Kationen und Anionen (Coulomb-Kraft)	Kalk (CaCO ₃), Gips (CaSO ₄), Soda (Na ₂ CO ₃)
Metallische Stoffe	 elektr. leitend metallischer Glanz häufig hohe Schmelz- und Siedetemperatur verformbar (duktil) gute Wärmeleiter 	Metalle bestehen aus Metallkationen, die ein "unendlich" grosses, 3- dimensionales Gitter bilden Die Metallkationen sind von Elektronen umgeben (sog. "Elektronengas")	Metallbindung = elektrostatische Anziehung zwischen Kationen und Elektronengas	Metalle und Legierungen z.B. Messing, Stahl, Amalgam
Diamantartige Stoffe (2)	sehr hart sehr hohe Schmelz- und Siede- temperatur nicht elektrisch leitend	Atomgitter, die sowohl Nichtmetall- als auch Metallatome enthalten können	Atombindung, teilweise auch Ionenbindung	Diamant (C), Quarz (SiO ₂), Korund (Al ₂ O ₃)
Hochmolekulare (makromolekulare) Stoffe (1)	keine definierte Schmelztemperatur sondern allmäh- liches Erweichen kein Verdampfen sondern Zersetzung	Sehr lange Moleküle, die aus gleichen oder unterschiedlichen Atomgruppen bestehen Aufgrund ihrer Molekülgrösse zeigen hochmolekulare Stoffe andere Eigenschaften als andere molekulare Stoffe	Atombindung	Alle Kunst- stoffe wie z.B. Nylon, PVC, PET, Silikon Natürliche Polymere wie Eiweisse, Stärke, Zellulose, DNA

Tab. 4: Die 5 Stoffklassen

Stoffklassen:

flüchtige Stoffe

• salzartige Stoffe

metallische Stoffe

diamantartige Stoffe

hochmolekulare Stoffe