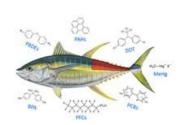
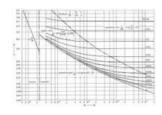
Bachelor Infrastruktur

Vorlesung und Übung: Naturwissenschaftliche Grundlagen

Prof. Dr. Welker, Frankfurt University of Applied Sciences





1. Physikalische Grundlagen (Wasser)

1.1 Hydrostatik/ Hydrodynamik

- Hydrostatik
 - Schweredruck (Fluide und Gase)
 - Auftrieb
- Hydrodynamik
 - Bernoulli
 - GMS

Druck

"Maß des **Widerstandes**, den Materie einer **Verkleinerung** ihres Raumes entgegensetzt."

Wirken einer Kraft F senkrecht zur Fläche A

$$p = \frac{F}{A} = \frac{m \cdot g}{A}$$

m [kg]; g: 9,81 [m/s²]; F [N]; A [m²]

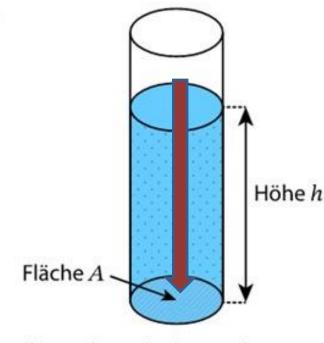


Abb. 1 Schweredruck am Boden einer Wassersäule

Umrechnen Einheiten Druck

- SI-Einheit Pascal (Pa), aber auch: N/m²; bar; mWS
- $1 \text{ N/m}^2 = 1 \text{ Pa}$
- 1 bar = 10^5 Pa = 100.000 Pa
- 1 mWS = 9.807 Pa = 0.1 bar

Druck

	bar	mbar	Pa (N/m²)	kPa (kN/m²)	Torr mmHg (0 °C)	mWs (4 °C)	at kp/cm²	inch Hg (0 °C)	inch H2O (4 °C)	PSI lb/inch ²	atm
bar	1	1000	100000	100	750,062	10,1972	1,01972	29,53	401,463	14,5038	0,986923
mbar	0,001	1	100	0,1	0,750062	0,0101972	0,00101972	0,02953	0,401463	0,014504	0,000986923
Pa (N/m²)	0,00001	0,01	1	0,001	0,007501		1,01972 x 10 ⁻⁵	0,0002953	0,004015	0,000145038	9,86923 x 10 ⁶
kPa (kN/m²)	0,01	10	1000	1	7,501	0,10197	0,010197	0,2953	4,015	0,145038	0,00986923
Torr mmHg	0,00133322	1,33322	133,322	0,133322	1	0,0135951	0,00135951	0,03937	0,53524	0,019337	0,00131579
mWs (4 °C)	0,098067	98,0665	9806,65	9,80665	73,5559	1	0,1	2,8959	39,3701	1,42233	0,096784
at kp/cm²	0,980665	980,665	98066,5	98,0665	735,559	10	1	28,959	393,701	14,2233	0,967841
inch Hg (0°C)	0,033864	33,8639	3386	3,386	25,4	0,345316	0,034532	1	13,5951	0,491154	0,033421
inch H2O (4 °C)	0,00249089	2,49089	249,089	0,249089	1,86832	0,0254	0,00254	0,073556	1	0,03613	0,002458
PSI lb/inch²	0,06895	68,9476	6894,76	6,89476	51,7149	0,70307	0,070307	2,03602	27,68	1	0,068046
atm	1,01325	1013,25	101325	101,325	760	10,3323	1,03323	29,921	406,78	14,6959	1

Schweredruck, Flüssigkeiten

Herleitung

Der Druck wird definiert als Gewichtskraft F_G pro Fläche A. Die Gewichtskraft F_G der Flüssigkeit = Masse $m \cdot$ Erdbeschleunigung g

$$p = \frac{F_G}{A} = \frac{m \cdot g}{A}$$

Die Masse m der Säule ergibt sich aus dem Produkt von Volumen V und Dichte ρ der Flüssigkeit: $m = V \cdot \rho$

$$p = \frac{V \cdot \rho \cdot g}{A}$$

Das Volumen berechnet man mit V = A ⋅ h → Schweredruck p:

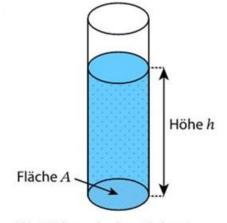


Abb. 1 Schweredruck am Boden einer Wassersäule

$$p = \frac{\rho \cdot g \cdot A \cdot h}{A} = \rho \cdot g \cdot h$$

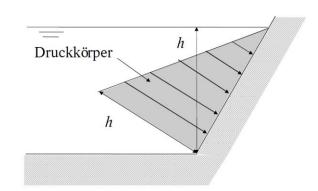
Schweredruck, Flüssigkeiten

Pascalsches Gesetz (Druckausbreitungsgesetz):

- An einem Ort innerhalb einer ruhenden Flüssigkeit wirkt der Druck in allen Richtungen mit gleichem Betrag.
- Der Flüssigkeitsdruck wirkt immer senkrecht auf das gedrückte Flächenelement.

$$\mathbf{p} = p_0 + \rho \cdot g \cdot \mathbf{h}$$

 $\rho \text{ [kg/m}^3]; g = 9.81 \text{ [m/s}^2]; h \text{ [m]}; p \text{ [Pa]}; p_0: Atmosphärendruck [100.000 Pa]}$



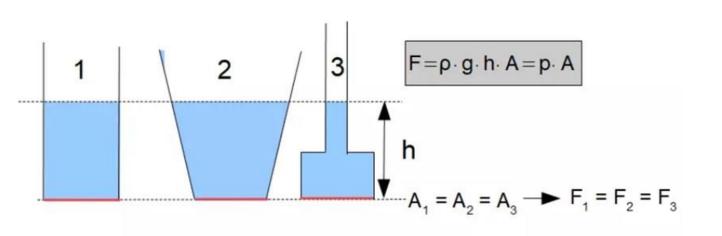
Der Wasserdruck p nimmt linear mit der Wassertiefe h zu. Der Wasserdruck p bleibt in einer Horizontalebene konstant (händert sich nicht).

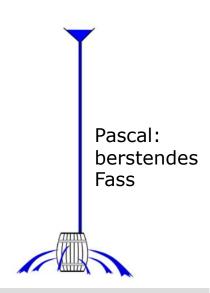
Schweredruck, Flüssigkeiten

Hydrostatisches Paradoxon: Druck p am Boden des Gefäßes ist überall gleich, obwohl Fluidmassen unterschiedlich

Flächen A gleich → Druckkraft F = p · A gleich

Druck einer Flüssigkeitssäule wirkt unabhängig von Form oder Querschnitt, nur von der Füllhöhe h abhängig

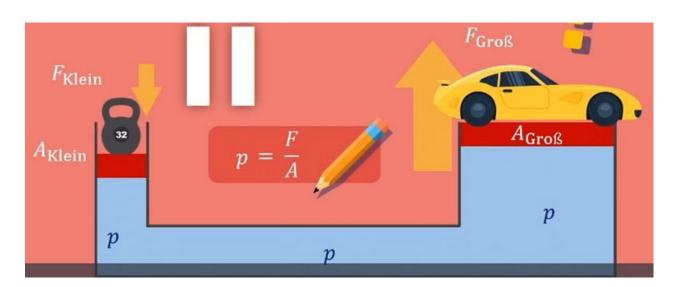




Schweredruck, Flüssigkeiten

Pascalsches Gesetz: Anwendung hydraulische Hebebühne

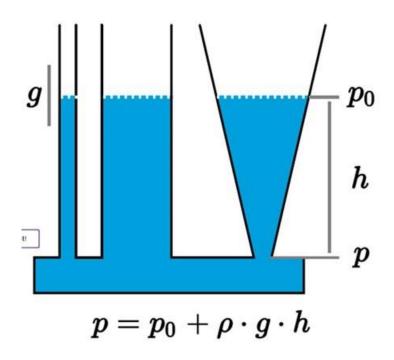
$$p = \frac{F}{A} \quad \Rightarrow \quad \frac{F_{klein}}{A_{klein}} = \frac{F_{groß}}{A_{groß}}$$



p überall gleich

Schweredruck, Flüssigkeiten

kommunizierende Röhren: Wasserstand h unabhängig von Querschnittsfläche und Form



p₀ ist z.B. der Atmosphärendruck

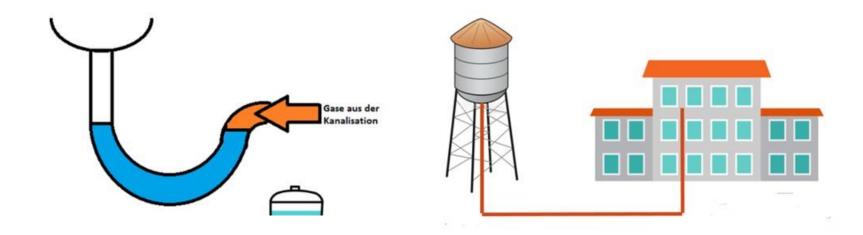
da ρ , g und ρ_0 gleich \rightarrow Wasserstand h gleich

https://www.leifiphysik.de/mechanik/druck-und-auftrieb/grundwissen/schweredruck

Schweredruck, Flüssigkeiten

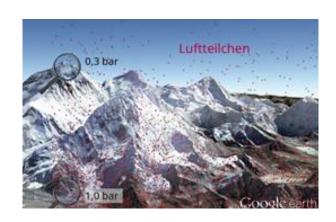
Anwendung kommunizierende Röhren:

- Geruchsverschlüsse Siphons
- Wassertürme (Sicherstellung Wasserdruck in Gebäuden)



Schweredruck, Gase

- Druck von Luft nimmt infolge
 Schwerkraft (Luftmasse auf Flächenelement wird größer) mit der Tiefe zu
- aber nicht linear wie bei Flüssigkeiten
- Unterschied zu Flüssigkeiten, da sich in Gasen (z.B. Luft) die Dichte mit der Tiefe infolge der Kompressibilität der Gase erheblich erhöht.



Schweredruck, Gase

Druck von Luft nimmt **mit der Höhe ab** (Luftmasse auf Flächenelement wird kleiner) → **Barometrische Höhenformel (bei T= konst.)**

h_o: Bezugshöhe; h: Höhe

$$p(h) = p_0 \cdot e^{-h/h_0}$$

$$h = h_0 \cdot \ln \left(\frac{p_o}{p} \right)$$

Nutzung bei Höhenbestimmung durch Messung Druck p

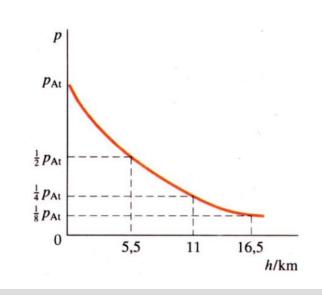
Beispiel:

Meeresniveau h_o : 0 m; $p_0 = 101.325$ Pa

2.000 m: p= ca. 78.000 Pa 5.500 m: p= ca. 50.662 Pa

11.000 m: p = ca. 25.331 Pa

Luft- oder Atmosphärendruck: veränderlich (Höhe/ Wetterlage)



Schweredruck, Gase

 Flüssigkeitsbarometer zur Messung Luftdruck (Torricelli: 1608–1647)

- Vakuum (kein Gas, das Druckkräfte erzeugt
 - \rightarrow p₀ = 0 über Quecksilber
 - → Luftdruck p_L an Höhe h der Quecksilbersäule über der Linie A-B ablesbar

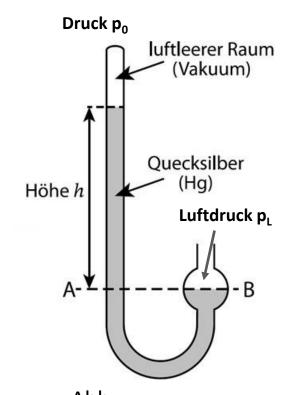


Abb. Flüssigkeitsbarometer nach Torricelli

pixabay license / Ernesto Orihuela via pixabay

Schweredruck, Gase

- Flüssigkeitsbarometer zur Messung Luftdruck (Torricelli: 1608–1647)
- Normaldruck Luft bei Quecksilber Hg:
 h = 750 mm (7,5 cm) Hg = 750 Torr = 1 atm
 = 1 bar = 1.000 mbar = 100.000 Pa
- Einheit Torr noch heute Anwendung bei Blutdruckmessung
- Normaldruck Luft bei Wasser H_2O : $h = 10.000 \text{ mm } (10 \text{ m}) H_2O$

Ursache: unterschiedliche Dichte von Hg und H₂O

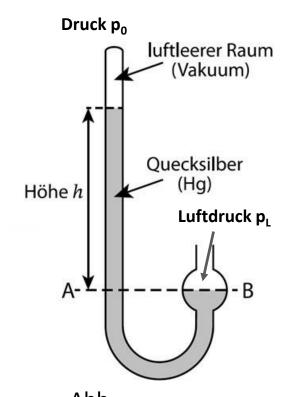


Abb. Flüssigkeitsbarometer nach Torricelli

pixabay license / Ernesto Orihuela via pixabay

Druck, Schweredruck Gase

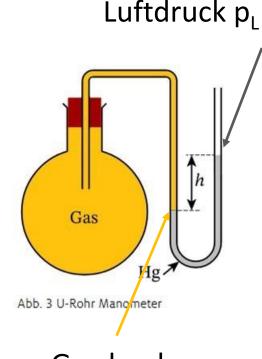
offenes U-Rohr-Manometer: Messung von Druckänderungen oder Druckunterschieden (hier: Unterschied Luftdruck zu Gasdruck)

Hinweis: Die Dichte von Quecksilber (Hg)

beträgt

$$\rho = 13,6 \cdot 10^3 \, \frac{\text{kg}}{\text{m}^3}$$

a) Berechnen Sie, wie groß der Unterschied zwischen **Gas**druck und **Luft**druck ist, wenn h = 37 mm ist.



Gasdruck p_{gas}

pixabay license / Ernesto Orihuela via pixabay

Druck, Schweredruck Gase

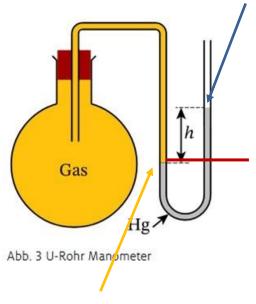
Der Druck p_{Hg} am Boden (Bezugspunkt rote Linie) einer Quecksilbersäule der Höhe h beträgt

$$p_{\rm Hg} = \rho \cdot g \cdot h \Rightarrow p_{\rm Hg} = 13.6 \cdot 10^3 \, \frac{\rm kg}{\rm m^3} \cdot 9.81 \, \frac{\rm m}{\rm s^2} \cdot 0.037 \, \rm m = 4.9 \cdot 10^3 \, \rm Pa$$

Der Unterschied zwischen dem Gasdruck und dem Luftdruck ist

$$p_{Hg} = 4.9 \cdot 10^3 \text{ Pa} = 4.900 \text{ Pa} = 49 \text{ hPa}$$

Luftdruck



Gasdruck

Druck, Schweredruck Gase

Luftdruck p_L

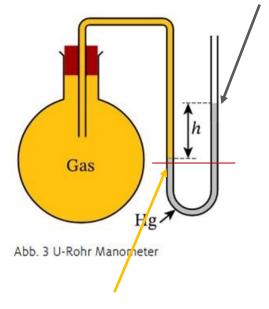
b) Berechnen Sie, wie groß der **Gasdruck** p_{Gas} ist, wenn der Luftdruck $p_L = 925$ hPa (oft ca. 1.000 hPa) ist.

Hinweis: 1 hPa = 100 Pa

Es gilt
$$\mathbf{p_{Gas}} = \mathbf{p_L} + \mathbf{p_{Hg}}$$

da Gasdruck > Luftdruck

$$p_{Hq} = 49 \text{ hPa}$$



Gasdruck p_{gas}

$$p_{Gas}$$
 = 925 hPa + 49 hPa = **974 hPa = 97.400 Pa**

Auftriebskraft

- Auftriebskräfte wirken auf Körper, die ganz oder teilweise in eine Flüssigkeit eingetaucht sind.
- Ein eingetauchter Körper erfährt einen senkrecht nach oben gerichteten Auftrieb.
- Die Auftriebskraft F_A entspricht der Gewichtskraft F_G der verdrängten Flüssigkeit, somit abhängig vom Volumen (nicht von der Masse) des Körpers.
- Auftrieb ist unabhängig von der Eintauchtiefe in der Flüssigkeit.

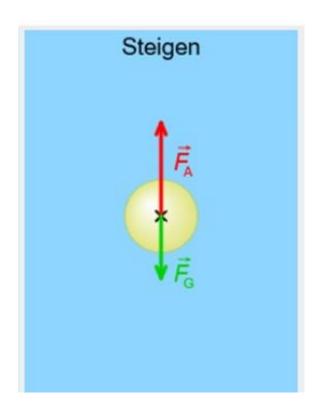
$$F_A = F_{G \ von \ Fluid}$$

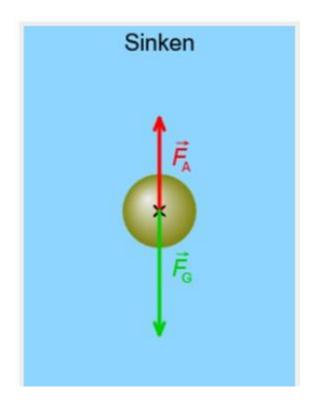
Gesetz des Archimedes

$$F_A = m_{von Fluid} \cdot g$$

$$F_A = \rho_{Fluid} \cdot V_K \cdot g$$

Druck, Schweredruck, Auftriebskraft





 $F_A > F_G$

 $F_A < F_G$

Auftriebskraft

Beispiel: Eis hat bei 0° die Dichte $\rho = 0.9168 \text{ kg/l}$

Ein würfelförmiger Eisblock von der Kantenlänge 10 m schwimmt in Wasser der Dichte $\rho = 1,000 \text{ kg/l}$

- a) Wie viel % schaut heraus?
- b) Sinkt der Eisblock in **Spiritus** (geringere Dichte) oder **Zuckerwasser** (größere Dichte) tiefer ein?
- c) Wenn man den Eisblock komplett unter Wasser taucht und loslässt, mit welcher **Kraft** wird er nach oben gedrückt? Eine Skizze der Kräfte (Auftrieb und Gewichtskraft) und Überlegungen zu deren Ursache sind hilfreich.

Auftriebskraft

Lösung:

a) Ansatz Schwimmen: $F_G = F_A$

$$\mathbf{m} \cdot \mathbf{g} = \rho_{\mathbf{w}} \cdot V_{\text{einget}} \cdot \mathbf{g}$$

$$\rho_{Eis} \cdot V_{ges} = \rho_{w} \cdot V_{einget}$$

$$\rho_{Eis}$$
 / ρ_{w} = V_{einget} / V_{ges}

$$0.9168 \text{ kg/l} / 1 \text{ kg/l} = 0.91$$

→ d.h. 91 % des Eisbergs sind unter Wasser, 9 % über Wasser (Ursache Titanic Untergang)

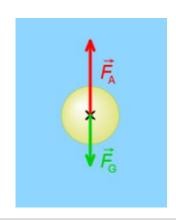
Auftriebskraft

- b) Bei **Spiritus (geringere Dichte, Süßwasser)** muss mehr verdrängt werden um die gleiche Masse zu erhalten, also sinkt der Eisblock **tiefer**. Im **Zuckerwasser (höhere Dichte, Salzwasser)** umgekehrt.
- c) Wenn der **Eisblock komplett unter Wasser** ist, verdrängt er ein Volumen V_{einget} von $10 \text{ m} \cdot 10 \text{ m} \cdot 10 \text{ m} = 1.000 \text{ m}^3 = 1.000.000 \text{ l Wasser}$, das ca. 1.000.000 kg wiegt \rightarrow Auftriebskraft F_A

$$\mathbf{F_A} = \rho_w \cdot V_{einget} \cdot g = m \cdot g = 1.000.000 \text{ kg} \cdot 9,81 \text{ m/s}^2 = \mathbf{9.810.000 N}$$

$$F_{G,Eisblock}$$
 = m · g = 916.800 kg (mit V_{einget} 1.000.000 l · ρ = 0,9168 kg/l) · 9,81 m/s² = **8.999.381 N**

$$\mathbf{F_{ges}} = 9.810.000 \text{ N} - 8.999.381 \text{ N} = \mathbf{810.619 N} = \mathbf{811 kN}$$

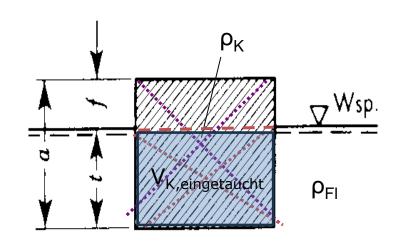


Druck, Schweredruck, Auftriebskraft

Bei einem schwimmenden Körper ist die Auftriebskraft gleich der Gewichtskraft $(F_A = F_G)$

- Eintauchtiefe t
- Freibord f (Höhe über Wasserspiegel)
- Höhe a = Eintauchtiefe t und Freibord f

$$\begin{aligned} F_G &= F_A \\ m_K \cdot g &= \rho_w \cdot V_{K, \text{eingetaucht}} \cdot g \\ \rho_K \cdot V_K \cdot g &= \rho_w \cdot A \cdot t \cdot g \\ \\ \rho_K \cdot \cancel{A} \cdot a \cdot g &= \rho_w \cdot \cancel{A} \cdot t \cdot g \end{aligned}$$



$$t = a \cdot \frac{\rho_K g}{\rho_{Fl} g}$$

$$f = a - t$$

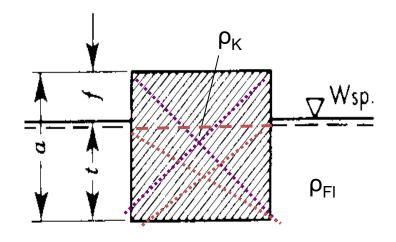
Druck, Schweredruck, Auftriebskraft

Floß: schwimmender Körper

 Auftriebskraft gleich der Gewichtskraft (F_A=F_G)

Daten Floß:

- Breite B: 3 m, Länge L: 5 m, Höhe a: 1,5 m
- Masse Floß m_{Floß}: 2.800 kg
- Dichte Wasser ρ_w: 1.000 kg/m³
- Wie tief sinkt das Floß durch das Eigengewicht in das Wasser ein (Eintauchtiefe t)?



$$f = a - t$$

Druck, Schweredruck, Auftriebskraft

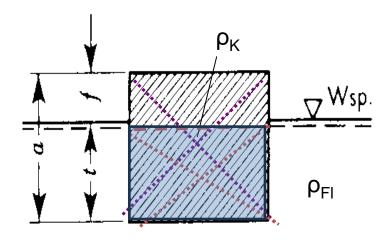
Floß: schwimmender Körper

- Auftriebskraft gleich der Gewichtskraft (F_A=F_{G,Floß})
- $\mathbf{F}_{\mathbf{G},\mathbf{Flo}\mathbf{B}} = \mathbf{m}_{\mathsf{Flo}\mathbf{B}} \cdot \mathbf{g}$
- $\mathbf{F_A} = \rho_w \cdot V_{einget} \cdot g$

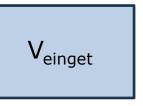
$$\rightarrow m_{Flo\beta} \cdot g = \rho_w \cdot V_{einget} \cdot g$$

$$mit V_{einget} = L \cdot B \cdot t = A \cdot t$$

$$\rightarrow m_{Flo\beta} \cdot g = \rho_w \cdot A \cdot t g$$



$$f = a - t$$

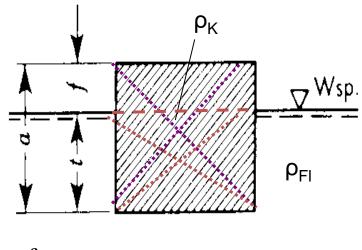


Auflösung nach t

Druck, Schweredruck, Auftriebskraft

$$\mathsf{t} = \frac{m_{Floß} \, \mathcal{G}}{A_{Floß} \, \rho_W \cdot \mathcal{G}} = \frac{m_{Floß}}{A_{Floß} \, \rho_W}$$

$$t = \frac{2.800 \, kg}{(3m \cdot 5 \, m) \cdot 1.000 \, kg/m^3} = 0,187 \, m$$



$$f = a - t$$

Eintauchtiefe Floß t = 0,187 m

Es ragt noch mit **Freibord f = 1,313 m** aus dem Wasser heraus. mit f = a - t = 1,5 m - 0,187 m)

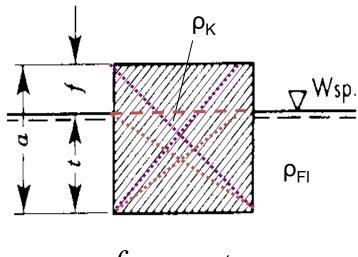
Druck, Schweredruck, Auftriebskraft

Hinweis für weitere Anwendungen:

1. Berechnung Eintauchtiefe t mit

Dichteangaben ρ_K und ρ_{FI} sowie Höhe a (siehe Seite 30)

$$\rho_{K} \cdot A \cdot a \cdot g = \rho_{W} \cdot A \cdot t \cdot g$$



$$f = a - t$$

dann keine Flächenangabe notwendig!

2. Berechnung zulässige Zuladung (m_{Zuladung}) Angabe Freibord f

- Ermittlung Eintauchtiefe t = a f
- Umstellung der Formel nach m_{Floß} = m_{Floß,ohne Zuladung} + m_{Zuladung}

Naturwissenschaftliche Grundlagen Hydrodynamik

Die Hydrodynamik ist Teil der Strömungslehre, die sich mit der **Bewegung von Flüssigkeiten** (Hydrodynamik) und **Gasen** (Aerodynamik) beschäftigt.

Zentrale Größen zur Beschreibung von Strömungen sind

- die Geschwindigkeit v
- der Druck p
- die Dichte ρ
- die Temperatur T und
- die Viskosität ν

Hydrodynamik

Kontinuitätsgesetz/ Massenerhaltung

Geschwindigkeit v

Dichte ρ

$$\frac{S}{t} = v$$

$$m = \rho \cdot V$$

$$s = v \cdot t$$

$$m = \rho \cdot s \cdot A$$

$$m = \rho \cdot v \cdot t \cdot A$$

Die Größe

$$\frac{dm}{dt} = \rho \cdot v \cdot A$$

bezeichnet man als **Massenstrom**.

Bei einer **stationären Strömung** ist wegen der **Massenerhaltung** der **Massenstrom** an allen Querschnittsflächen **konstant**.

$$\frac{dm}{dt} = \rho \cdot v_1 \cdot A_1 = \rho \cdot v_2 \cdot A_2$$

Hydrodynamik

Kontinuitätsgesetz/ Massenerhaltung

inkompressible Flüssigkeiten: Massenstrom proport. Volumenstrom Dichte $\rho = m/V$ des Massenstroms jeweils gleich

$$\frac{dm}{dt} = \rho \cdot v_1 \cdot A_1 = \rho \cdot v_2 \cdot A_2$$

$$\frac{dV}{dt \cdot \rho} = \rho \cdot v_1 \cdot A_1 = \rho \cdot v_2 \cdot A_2$$

$$\frac{dV}{dt} = Q = v_1 \cdot A_1 = v_2 \cdot A_2$$

Hydrodynamik

Kontinuitätsgesetz/ Massenerhaltung

$$\frac{dV}{dt} = Q = v_1 \cdot A_1 = v_2 \cdot A_2$$

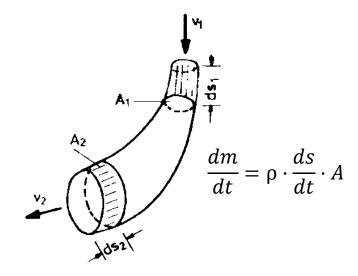
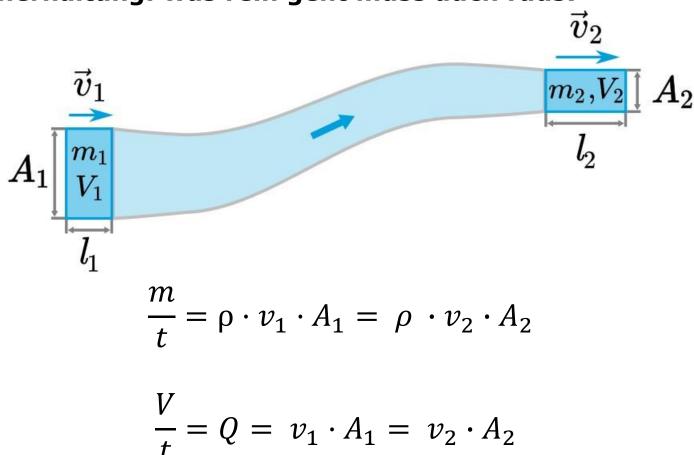


Abb. 4.2: Stromröhre

- $Q_{zu} = Q_{ab}$
- Q: Änderung des Volumens über die Zeit = **Volumenstrom**: $Q = dV/dt = A \cdot v \rightarrow Q = v \cdot A$
- Q steht für den **Durchfluss**, je nach "Richtung" auch für Zu- bzw. Abfluss
- Einheit: z.B. [m³/s], [l/s], [m³/h] (Längeneinheit³/Zeiteinheit)

Hydrodynamik

Massenerhaltung: was rein geht muss auch raus!



Hydrodynamik

Energieerhaltung

- Die Summe der Lageenergie (E_L), der kinetischen Energie (E_K) und der Druckenergie (also der verrichteten Arbeit E_D) entlang der Stromröhre bleibt erhalten.
- Die BERNOULLI-Gleichung liefert einen Zusammenhang zwischen Strömungsgeschwindigkeit v und Druck p
- gilt nur für stationäre, verlustfreie Strömung eines inkompressiblen Fluides

$$\begin{split} E &= E_L \ + \ E_D \ + \ E_K \\ &\text{Lage-} &\text{Druck-} &\text{Kinetische} \\ &\text{energie} &\text{energie} &\text{Energie} \end{split}$$

$$= m \cdot g \cdot h + \frac{m \cdot p}{\rho} + \frac{m \cdot v^2}{2}$$

Hydrodynamik

Energiegleichung

Einheit: Joule 1 J = 1 kg m²/s² = 1N m

$$E = E_L + E_D + E_K$$
 Lage- Druck- Kinetische energie energie Energie

$$konst. = m \cdot g \cdot h + \frac{m \cdot p}{\rho} + \frac{m \cdot v^2}{2}$$

$$konst. = F_G \cdot h + V \cdot p + \frac{m \cdot v^2}{2}$$

- 2. Multiplikation mit Dichte ρ
- → Druckgleichung

$$konst. = g \cdot h + \frac{p}{\rho} + \frac{v^2}{2}$$

$$konst. = \rho \cdot g \cdot h + p + \frac{\rho \cdot v^2}{2}$$

geodätischer Druck

statischer Druck dynamischer Druck (Staudruck)

bzw. N/m

Hydrodynamik

Energiegleichung

Einheit: Joule $1 J = 1 kg m^2/s^2 = 1N m$

$$E = E_L + E_D + E_K$$

$$\begin{array}{ccc} \text{Lage-} & \text{Druck-} & \text{Kinetische} \\ \text{energie} & \text{energie} & \text{Energie} \end{array}$$

$$konst. = m \cdot g \cdot h + \frac{m \cdot p}{\rho} + \frac{m \cdot v^2}{2}$$

$$konst. = F_G \cdot h + V \cdot p + \frac{m \cdot v^2}{2}$$

Division durch Masse $m \cdot g = F_G$

→ Höhengleichung

$$konst. = h + \frac{p}{\rho \cdot g} + \frac{v^2}{2 \cdot g}$$

Einheit: Höhe in m

geodätische Höhe

Druckhöhe

Geschwindigkeits-Höhe (kinetische Energie)

Piezometerhöhe (potenzielle Energie)

Hydrodynamik

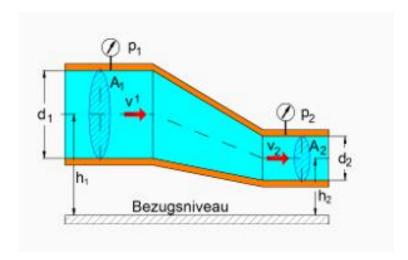
Höhengleichung

$$konst. = h + \frac{p}{\rho \cdot g} + \frac{v^2}{2 \cdot g}$$

geodätische Höhe Druckhöhe **Geschwindigkeits**höhe

$$h_1 + \frac{p_1}{\rho \cdot g} + \frac{{v_1}^2}{2 \cdot g} = h_2 + \frac{p_2}{\rho \cdot g} + \frac{{v_2}^2}{2 \cdot g}$$

Einheit: Höhe in m



v = Strömungsgeschwindigkeit (m/s)

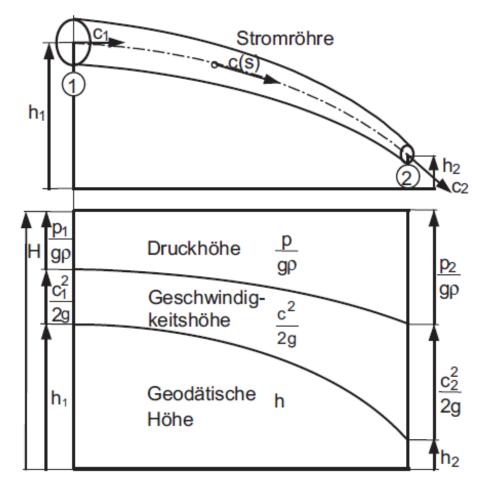
g = Fallbeschleunigung (m/s²)

h = geodätische Höhe (m)

p = statischer Druck (Pa)

 ρ = Dichte (kg/m³)

Index $_{1}$ bzw. $_{2}$ bezieht sich auf den jeweiligen Ort im System

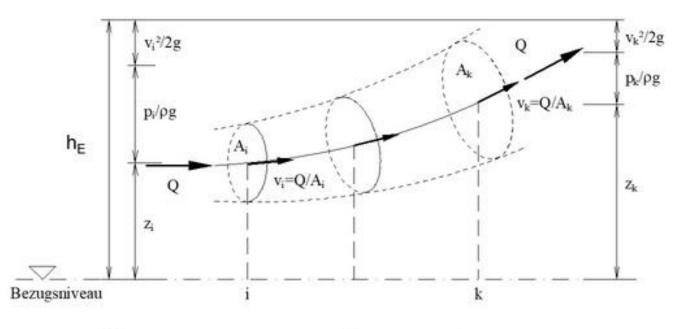


hier v = c!

Bild 6. Graphische Darstellung der Höhenanteile der Bernoulligleichung

$$\frac{c_1^2}{2g} + \frac{p_1}{g\rho} + h_1 = \frac{c_2^2}{2g} + \frac{p_2}{g\rho} + h_2 \tag{8}$$

Hydrodynamik



$$h_E = const \Rightarrow h_{E(i)} = h_{E(k)}$$

$$z_i + \frac{p_i}{\rho g} + \frac{v_i^2}{2g} = z_k + \frac{p_k}{\rho g} + \frac{v_k^2}{2g}$$

Energieerhaltung

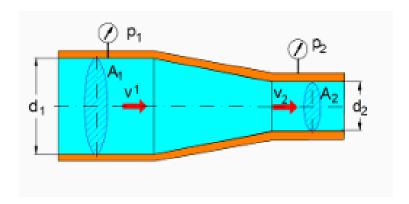
- Lageenergie (E_L) steigt $\rightarrow z_K$
- kinetische
 Energie (E_K)
 sinkt →
 Querschnittsaufweitung
 v_k²/2g
- Druckenergie (E_D) sinkt p_k/ρ g
- WegenEnergieerhaltung

Hydrodynamik

BERNOULLI-Gleichung bei horizontaler Rohrströmung

Hier entfällt h, da h sich nicht ändert

$$p_1 + \frac{p_1}{\rho \cdot g} + \frac{{v_1}^2}{2 \cdot g} = p_2 + \frac{p_2}{\rho \cdot g} + \frac{{v_2}^2}{2 \cdot g}$$



v = Strömungsgeschwindigkeit (m/s)

g = Fallbeschleunigung (m/s²)

p = statischer Druck (Pa)

ρ = Dichte (kg/m³)

Index 1 bzw. 2 bezieht sich auf den jeweiligen Ort im System

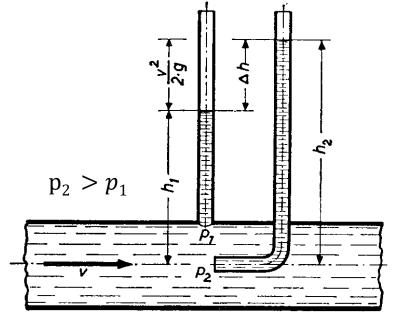
Hydrodynamik

Durchflussmessung Q [l/s] mit einem Pitotrohr BERNOULLI-Gleichung (Höhenbezug)

$$z_1' + \frac{p_1}{\rho \cdot g} + \frac{{v_1}^2}{2 \cdot g} = z_2 + \frac{p_2}{\rho \cdot g} + \frac{{v_2}^2}{2 \cdot g}$$

Streichung z-Komponenten → horizontales Rohr

$$\frac{p_1}{\rho \cdot g} + \frac{{v_1}^2}{2 \cdot g} = \frac{p_2}{\rho \cdot g} + \frac{{v_2}^2}{2 \cdot g}$$



Durchmesser d

Hydrodynamik

Durchflussmessung Q in einem Pitotrohr

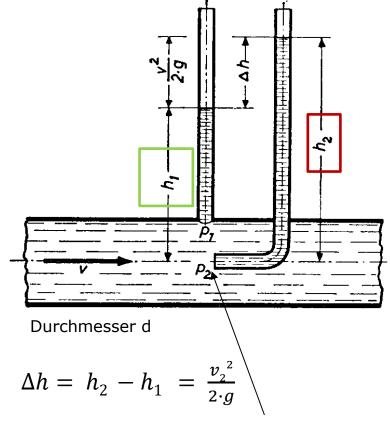
$$\frac{p_1}{\rho \cdot g} + \frac{v_1^2}{2 \cdot g} = \frac{p_2}{\rho \cdot g} + \frac{v_2^2}{2 \cdot g}$$

mit
$$h_1 = \frac{p_1}{\rho \cdot g}$$
 und $h_2 = \frac{p_1}{\rho \cdot g} + \frac{v_1^2}{2 \cdot g}$

$$h_1 + \frac{{v_1}^2}{2 \cdot g} = h_2$$

$$v_1 = \sqrt{2 \cdot g (h_2 - h_1)} = \sqrt{2 \cdot g \cdot \Delta h}$$

$$Q = v_1 \cdot A = v_1 \cdot \frac{d^2 \cdot \pi}{4}$$



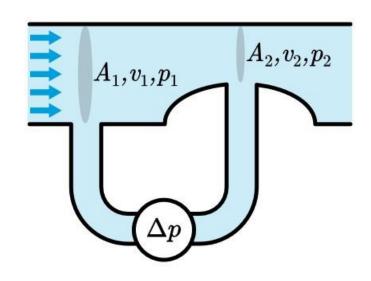
 v_2 =0, Geschwindigkeitsenergie \rightarrow Druckenergie (sog. Staudruck) $h_2 - h_1 = \Delta h$

Hydrodynamik

Anwendung Kontinuitätsgleichung Masseerhaltung und Bernoulli:

VENTURI-Rohr: Gerät zur **Geschwindigkeitsmessung** (italienischer Physiker VENTURI (1746 - 1822)

Auch **Durchflussmesser** basieren auf dem Prinzip des VENTURI-Rohrs, es gibt aber noch zahlreiche andere technische Anwendung, die auf diesem Prinzip basieren.



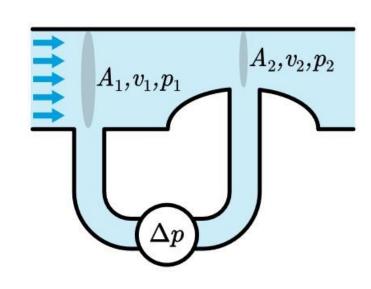
Hydrodynamik

Prinzip: Rohr mit einer Engstelle; Druckmesser misst die **Druckdifferenz** Δp zwischen dem Druck p_1 im weiteren Bereich und dem Druck p_2 im engeren Bereich.

Bei bekannter Dichte des Fluids und den Querschnittsflächen A_1 und A_2 kann man die Strömungsgeschwindigkeit v_1 berechnen.

Kontinuitätsgleichung (Masseerhaltung) für inkompressible Fluide

$$A_1 \cdot v_1 = A_2 \cdot v_2 \Leftrightarrow v_2 = rac{A_1}{A_2} \cdot v_1 \quad (1)$$



Hydrodynamik

Die BERNOULLI-Gleichung (Druckbezug; s. 43)

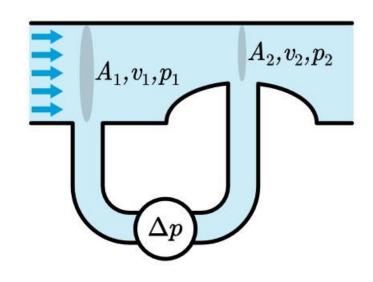
für das VENTURI-Rohr lautet:

$$konst. = \rho \cdot g \cdot h + p + \frac{\rho \cdot v^2}{2}$$

Druck aus **Lageenergie** (geodätischer Druck) $(\rho \cdot g \cdot h)$ gleich auf beiden Seiten (gleiche Bezugsebene) \rightarrow Wegstreichen

$$rac{1}{2} \cdot
ho \cdot v_1^2 + p_1 = rac{1}{2} \cdot
ho \cdot v_2^2 + p_2 \quad (2)$$

Term für v_2 von Gleichung (1) in Gleichung (2) einsetzen und auflösen nach v_1 .



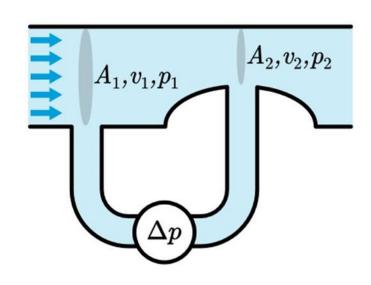
Hydrodynamik

$$egin{aligned} rac{1}{2}\cdot
ho\cdot v_1^2+p_1&=rac{1}{2}\cdot
ho\cdot\left(rac{A_1}{A_2}\cdot v_1
ight)^2+p_2\ rac{1}{2}\cdot
ho\cdot v_1^2+p_1&=rac{1}{2}\cdot
ho\cdot\left(rac{A_1}{A_2}
ight)^2\cdot v_1^2+p_2\ rac{1}{2}\cdot
ho\cdot\left(rac{A_1}{A_2}
ight)^2\cdot v_1^2-rac{1}{2}\cdot
ho\cdot v_1^2&=p_1-p_2:=\Delta p\ rac{1}{2}\cdot
ho\cdot\left(\left(rac{A_1}{A_2}
ight)^2-1
ight)\cdot v_1^2&=\Delta p\ \end{aligned} \ v_1^2&=rac{2\cdot\Delta p}{
ho\cdot\left(\left(rac{A_1}{A_2}
ight)^2-1
ight)}$$

Geschwindigkeit

aus Messung Druckdifferenz und Flächenverhältnisse

$$v_1 = \sqrt{rac{2\left(\Delta p
ight)}{
ho\cdot\left(\left(rac{A_1}{A_2}
ight)^2 - 1
ight)}}$$



Durchfluss

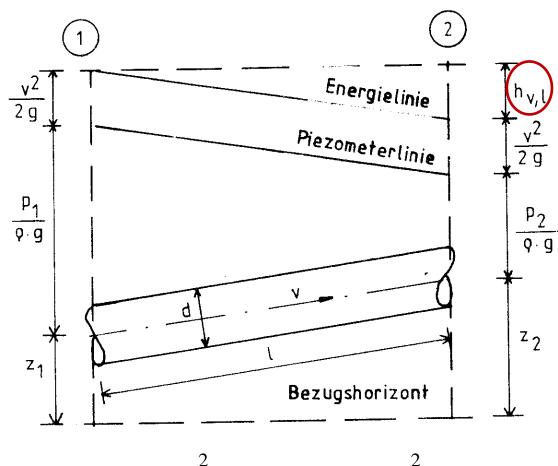
$$Q = v_1 \cdot A$$

Hydrodynamik

Durch **Reibung** und Widerstände im Rohrsystem wird Energie in Wärme umgewandelt (geht dem System verloren).

→ hydraulische kontinuierliche Verluste.

Diese Anteile werden mit **h**_v beschrieben.



$$z_1 + \frac{p_1}{\rho g} + \frac{{v_1}^2}{2g} = z_2 + \frac{p_2}{\rho g} + \frac{{v_2}^2}{2g} + h_V$$

Hydrodynamik

Kontinuierliche Verluste $h_{v,r}$ in Rohrleitungen sind:

- proportional zur Leitungslänge L (längere Leitung, höhere Verluste)
- umgekehrt proportional zum Rohrdurchmesser d (höherer Rohrdurchmesser, weniger Reibung/Verluste)
- proportional zum Quadrat der Fließgeschwindigkeit v²
 (höhere Geschwindigkeit, mehr Bewegung, mehr Wärme)

$$h_{V,r} = \lambda \cdot \frac{L}{d} \cdot \frac{v^2}{2g}$$
 Darcy-Weißbach

Hydrodynamik

Kontinuierliche Verluste $h_{v,r}$ in Rohrleitungen:

- Reibungsbeiwert λ
 - abhängig von der Viskosität v
 - abhängig vom Fließzustand
 (Turbulenz, Reynoldszahl Re= v * d/ v)
 - abhängig von der Beschaffenheit
 der Rohrinnenwandung (k/d)
 mit k= Reibungswert und d = Durchmesser .

Reibungsbeiwert: λ [-] (lambda)

λ-Wert [-] wird iterativ mit Graphiken bestimmt

$$h_{V,r} = \lambda \frac{L}{d} \cdot \frac{v^2}{2\varrho}$$
 Darcy-Weißbach

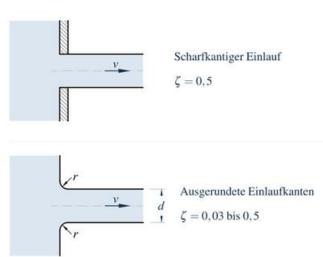
Hydrodynamik

Örtliche Verluste

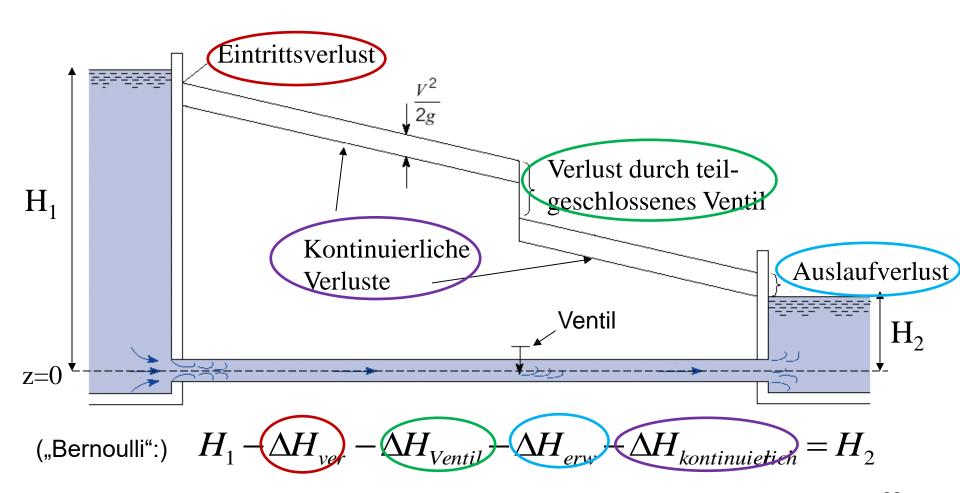
Verluste proportional zum **Geschwindigkeitsquadrat** ($\Delta H \sim V^2$)

- → analog zu Energiehöhen und kontinuierlichen Verlusten Angabe als Verlusthöhen ΔH (=h_{v.ö})
- \rightarrow Verlustbeiwerte (ζ -Werte) **empirisch ermittelt,** Messreihen im Labor
- Örtliche Verluste bei Querschnittserweiterung/-verengung, Krümmern, Armaturen, Absperrorganen, Drosseln, Rohrverzweigungen und -vereinigungen

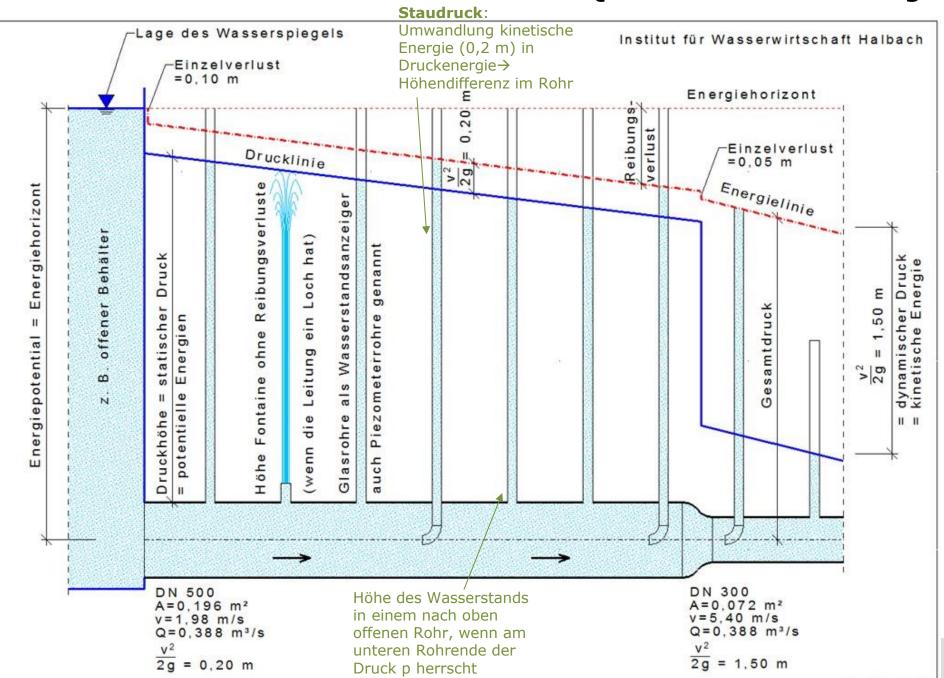
$$h_{v,\ddot{ ext{o}}} = extstyle H = \zeta \cdot rac{v^2}{2g}$$
 Verlustbeiwert zeta



Hydrodynamik



Druckverhältnisse durchströmtes Rohr mit Querschnittsreduzierung



Verständnis der Druck- und Energielinie in einem hydraulischen Längsschnitt:

- Die Energieformen bei hydraulischen Betrachtungen werden in [m Wassersäule; m WS] berechnet, da diese Ergebnisse dann keiner weiteren Umrechnung bedürfen und weil die Wasserstände sofort ablesbar sind.
- Die potentielle Energie, auch Lageenergie genannt, entspricht der Lage des Wasserspiegels, den dieser z.B. in Glasrohren einnehmen würde, wenn die Rohrleitung Löcher hätte und in diesen Glasröhren (ohne Bogen) stecken würden.

- Die Verbindung der Wasserspiegel in den Glasrohren wird auch Drucklinie genannt. Bis zu dieser Drucklinie hoch würde auch das Wasser aus einer senkrechten Undichtigkeit wie eine Fontäne spritzen.
- Werden nun die Piezometerrohre etwas in die Rohrleitung hineingeführt und so abgewinkelt, dass ihre Öffnung von dem Wasser gerade angeströmt wird (Pitotrohr), so steigt der Wasserspiegel – sofern das Wasser fließt – über den Wasserspiegel der Drucklinie um die sogenannte Geschwindigkeitshöhe v²/2g.
- Über der Drucklinie liegt also im Abstand der Geschwindigkeitshöhe die Energielinie.

- Die Höhe der Energielinie an einem bestimmten Leitungsabschnitt entspricht der an diesem Punkt noch vorhandenen Gesamtenergie.
- Nimmt die Geschwindigkeit z.B. wegen einer Reduzierung oder einer Einengung zu, dann steigt die Geschwindigkeitshöhe und die Drucklinie senkt sich um dieses Maß.
- Reibungsverluste verringern die Druck- und Energielinie kontinuierlich
- örtliche Verluste entstehen z.B. bei Querschnittsveränderungen oder Einbauten (Ventile, Klappen usw.) Je höher die Geschwindigkeit, desto höher die Reibungsverluste.

Hydrodynamik

Gauckler-Manning-Strickler (GMS) Formel:

- offene Gerinne mit Freispiegelabfluss (Kanalisation und Fließgewässer) im Unterschied zu Druckabfluss (TW-Leitungen)
- Die Formeln hängen vom hydraulischen Radius R und dem Fließgefälle I des Wasserspiegels ab. Energieliniengefälle ist gleich Fließgefälle I, gilt aber nur bei Normalabfluss (stationär und gleichförmig)
- Berücksichtigung sämtliche Fließwiderstände in Form empirischer Beiwerte k_{st}.
- Der meist zu berechnende Abfluss Q ergibt sich dann durch Multiplikation der gefundenen mittleren Fließgeschwindigkeit v_m mit der Querschnittsfläche A

$$Q [m3/s] = vm [m/s] \cdot A [m2]$$

Hydrodynamik

Fließformel nach Gauckler-Manning-Strickler (GMS) gilt für die üblichen Verhältnisse in offenen Fließgewässern und offenen Kanalgerinnen mit guter Genauigkeit

$$egin{aligned} v_{\mathrm{m}} &= k_{\mathrm{st}} \cdot R^{rac{2}{3}} \cdot I^{rac{1}{2}} \ &= k_{\mathrm{st}} \cdot \sqrt[3]{R^2} \cdot \sqrt{I} \end{aligned}$$

mit dem Rauheitsbeiwert nach Strickler $k_{
m st}$ in m $^{1/3}$ /s für die Gerinnerauheit

v: Fließgeschwindigkeit in [m/s]

I: Gefälle in [m/m]

R: hydraulischer Radius in [m] mit A/ U [m²/m]

Rauheitsbeiwert nach Strickler

- Strickler-Beiwert k_{St} [m^{1/3}/s]: in Abhängigkeit von der
 Oberflächenbeschaffenheit, Bewuchs und Querschnittsform zu wählen.
- Der Strickler-Beiwert wurde von Strickler sowohl im Labor als auch in der Natur experimentell bestimmt.
- ungewöhnliche Einheit hat keine physikalische Bedeutung, sondern wurde so festgelegt, dass die Gleichung dimensionsecht ist.

Hydrodynamik

Rauheitsbeiwerte nach Strickler

Oberfläche	$k_{\rm st}$ in m ^{1/3} /s
Glatter Beton	100
Gerades Fließgewässer	30-40
Mäandrierendes Flussbett mit Bodenbewuchs	20-30
Wildbach mit Geröll	10-20
Wildbach mit Unterholz	<10

Naturwissenschaftliche Grundlagen Hydrodynamik

Rauheitsbeiwerte nach Strickler

Tabelle: Empfohlene Rauhigkeitsbeiwerte k_{ST}

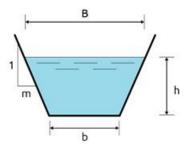
Gerinnetyp	Wandbeschaffenheit	k _{ST}
Gemauerter	Haussteinquader	70 - 80
Kanal	normales Bruchsteinmauerwerk	60
	grob behauene Steine	50
	gepflasterte Böschung, natürliche Sohle	45 - 50
Betonkanal	Zementglattstrich	100
	alter Beton, saubere Flächen	60
	unregelmäßige Betonflächen	50
Erdkanal	festes Material, glatt	60
	Rasen	25
	Sand, Lehm oder Kies; stark bewachsen	20 - 25

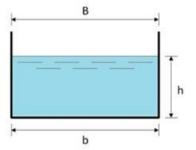
Hydrodynamik

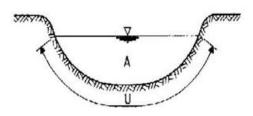
hydraulischer Radius in [m]

$$R[m] = \frac{A[m^2]}{U[m]}$$

Quotient aus **Durchflussquerschnitt A** und **benetztem Umfang U** einer Flüssigkeitsleitung.





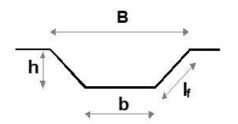


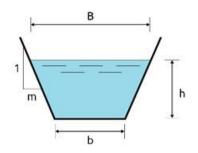
Hydrodynamik

Technische Gerinne:

Trapez

Breite B	$b+2\cdot mh$			
Mittlere Wassertiefe	$\frac{(b+mh)h}{b+2\cdot mh}$			
Querschnittsfläche ${\cal A}$	$(b+mh)\cdot h$			
benetzter Umfang P	$b + 2 \cdot h \cdot \sqrt{1 + m^2}$			
Hydraulischer Radius r_h	$\frac{(b+mh)\cdot h}{b+2h\cdot \sqrt{1+m^2}}$			



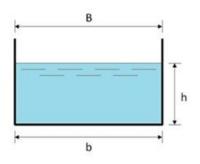


Hydrodynamik

Technische Gerinne

Rechteck

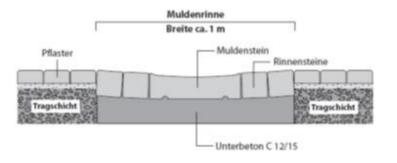
Breite $oldsymbol{B}$	b		
Mittlere Wassertiefe	h		
Querschnittsfläche $\cal A$	$b\cdot h$		
benetzter Umfang P	b+2h		
Hydraulischer Radius r_h	$\frac{bh}{b+2h}$		

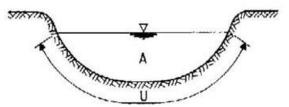


Hydrodynamik

Technische Gerinne

Halbschale

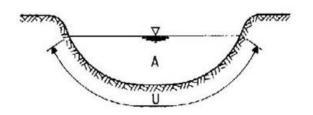




Hydrodynamik

Natürliche Gerinne

- Halbschale
- Verbundprofile (gegliederte Querschnitte)
- hier erfolgt die
 Berechnung für jedes
 Teilgerinne
 (Hauptgerinne und zwei
 Vorländer) mit korrekter
 Berücksichtigung der
 Trennflächen zur
 Ermittlung von U



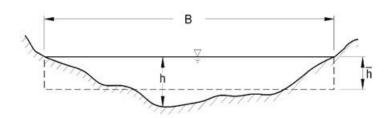


Abb. 1.5.: Natürliches Flussprofil

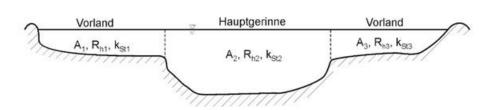


Abb. 2.11.: Berechnung von Gerinneabfluss bei Verbundprofilen

Hydrodynamik

Schätzen Sie die **Fließgeschwindigkeit** des Rheins in Stundenkilometer [km/h] ab, der 300 km von Köln (50 m üNN) bis zur Mündung (0 m üNN) fließt. Die Breite b beträgt im Mittel 350 m, die Wassertiefe h = 8 m.

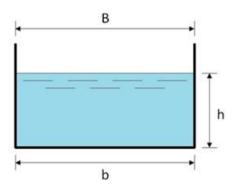
$$I = 50 \text{ m}/300.000 \text{ m} = 0,000167$$

$$A = 350 \text{ m} * 8 \text{ m} = 2.800 \text{ m}^2$$

$$U = 2 * 8 m + 350 m = 366 m$$

$$R = 2.800 \text{ m}^2/388 \text{ m} = 7,65 \text{ m}$$

$$k_{St} = ca. 30 \text{ m}^{1/3}/\text{s}$$



$$v_{\rm m} = k_{\rm st} \cdot R^{\frac{2}{3}} \cdot I^{\frac{1}{2}} = 30 \cdot 7,65^{2/3} \cdot 0,000167^{\frac{1}{2}} = 1,5 \text{ m/s} = 5,4 \text{ km/h}$$

Hydrodynamik

Berechnung Kanalgerinne

$$A_{u} = 0.8 [ha]$$

$$r_{0,2(10)} = 178,4 [l/s ha] aus KOSTRA$$

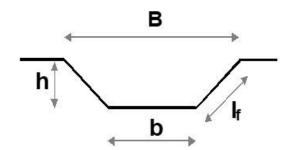
$$k_{St} = 50 [m^{1/3}/s]$$

Zu wählen: Gerinneform (Trapez)

$$Q = v * A$$

$$Q_{Rinne} = k_{ST} \cdot J^{1/2} * R^{2/3} * A > Q_r = r_{n(D)} * A_u$$

- 1. maßgebender Regenwasserabfluss Q_r
- 2. Profil & Abmessungen wählen
- 3. Abflusskapazität Gerinne Q_{Rinne} bestimmen



Hydrodynamik

Bemessung offenes Trapezprofil

(1) Bemessungsabfluss

abflusswirksame Fläche $A_u = 0.8$ ha

Regendauer D = 10 min

Regenhäufigkeit n = 0,2 a^{-1}

Regenspende $r_{D(n)} = 178,4 \text{ l/(s·ha)}$

Bemessungsabfluss $Q_R = 143$ l/s

(2) Festlegung des Profils

Trapezquerschnitt

- Breite b = 0.4 m

- Seitenlänge $I_f = 0,2$ m

- Höhe h = 0.15 m

- Rauhigkeit $k_{ST} = 50 \text{ m}^{1/3}/\text{s}$

- Gefälle J = 4 %

Hydrodynamik

					h	, / ₁			
(3)	Kennwerte Absflussque	rschr	nitt		+	b lf			
	obere Breite	В	=	b + 2 · $(I_f^2 - h^2)^{1/2}$	=	0,66	m		
	Querschnittsfläche	Α	=	0,5 · (B + b) · h	=	0,080	m²		
	benetzter Umfang	U	=	$b + 2 \cdot I_f$	=	0,80	m		
	hydraulischer Radius	R	=	A/U	=	0,1	m		
(4)	Abflusskapazität Rinne								
	Fließgeschwindigkeit	V	=	$k_{ST} \cdot J^{1/2} \cdot \ R^{2/3}$	=	2,15	m/s		
	Ableitungskapazität			$v \cdot A$	=	0,172	m³/s		
					=	172	l/s		
	Bemessungsabfluss	\mathbf{Q}_{R}	=	143 /s		172	l/s		
	→ Abflusskapazität ausreichend								

