
Berechnungsbeispiel I

außen

- 1: Gipsmörtel
- 2: Hochlochziegel ρ_R =1400 kg/m³
- 3: Zementmörtel
- 4: Polyurethan-Hartschaum (PUR) nach DIN EN 13165, Kategorie I, Nennwert 0,033
- 5: Kunstharzputz

Berechnungsbeispiel I

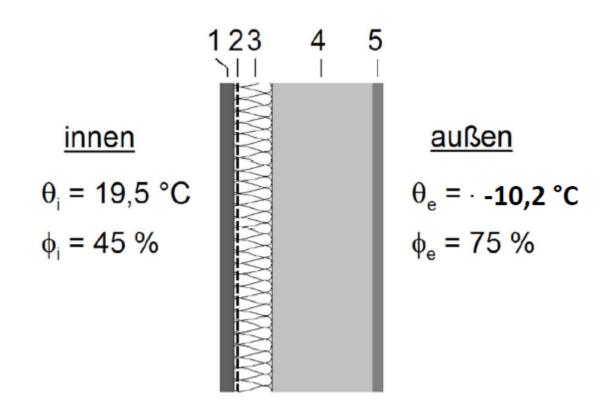
Aufgabenstellung

- A) Erfüllt der Wärmedurchlasswiderstand die Anforderungen an den Mindestwärmeschutz nach DIN 4108-2?
- B) Wie groß ist der Wärmedurchgangswiderstand bzw. der Wärmedurchgangskoeffizient der betrachteten Außenwand?
- C) Welche Temperatur sind an den Grenzen zwischen den einzelnen Schichten zu erwarten (Außenlufttemperatur: 5°C, Innenlufttemperatur: 20 °C)?
- D) Welcher Sättigungsdampfdruck ist an den Grenzen zwischen den einzelnen Schichten zu erwarten?
- E) Führen Sie den Feuchteschutznachweis nach DIN 4108-3.

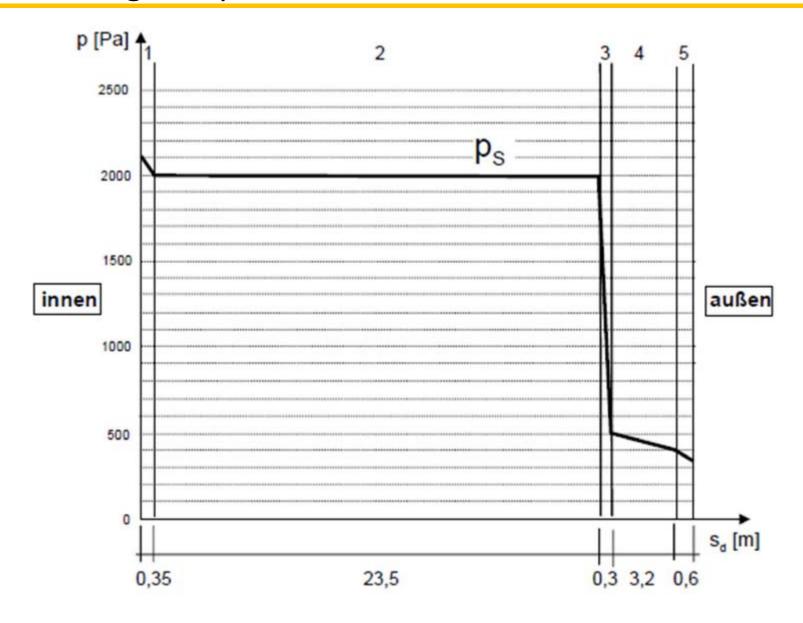
für das Diffusions-

		$T \sim a$	Lia gibi	mm					
Schicht NI.	d [m]	M	Sal	ESal Satt-I	[AR]	Rolling (Rolling)	EK]	[-c]	Psat CPa]
W- Ubegang innen									
1 Gipsmorke	0,015								
2 Hochloch zigel	0,24								
3 dementinsikl	0,005							l 	
4 PUR-Dömmung	0.06							[
5 Kunsthar zput? W- Übegang außen	0,005								
W- Ubegang aufen									
					R=5RD				
1					RT				
					Ü				

Voibereitung: Tobelle zeichnen, Makrial Vernodalen zusammenhagen (d., p. 1)


), p. aus DIN 4108.4 und DINEN 150 10456

Anmeillung 20): Bemessungswet maßgbend;


Berechnungsbeispiel II

Nachstehende innengedämmte Außenwand soll feuchtetechnisch untersucht werden.

- A) Überprüfen Sie unter Verwendung des zur Verfügung gestellten Diffusionsdiagramms (s. nächste Folie), ob mit Tauwasserbildung zu rechnen ist.
- B) Geben Sie an, bei welcher relativen Luftfeuchte im Innenraum gerade so NICHT mit Tauwasserbildung zu rechnen ist.

Berechnungsbeispiel III

Berechnungsbeispiel III

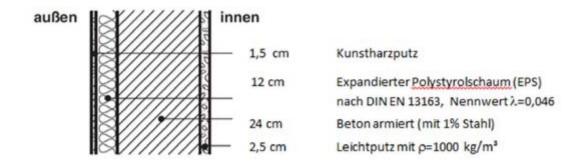


Bild 1: Skizze des Schichtenaufbaus der Außenwand

Tabelle 1: Datenbasis für den Wärme- und Feuchteschutznachweis

	Schicht [-]	Dicke d [m]	ρ [kg/m³]	μ [-]	5 <u>d</u> [m]	[°C]	Ps [Pa]
	innen		3 3	:		20	2340
1	Constant of	0.035	1000	15/20		18,2	2091
1	Leichtputz	0,025	1000	15/20		17,5	2001
2	Beton (1% Stahl)	0,24	2300	80/130		16,3	1854
3	EPS	0,12	30	20/100		720000	0.00
4	Kunstharzputz	0,015	1100	50/200		-9,0 -9,4	284
	außen					-10,0	260

Berechnungsbeispiel III

- A) An welcher Stelle rechnen Sie in diesem Bauteil mit Tauwasserausfall?
- B) Zeichnen Sie das Diffusionsdiagramm
- C) Überprüfen Sie ob und an welcher Stelle mit Tauwasserausfall zu rechnen ist? (relative Luftfeuchten: innen 68%r.F. und außen entsprechend Normvorgaben)
- D) Bei welcher relativen Feuchte im Raum könnte Tauwasserbildung gerade so verhindert werden? Leiten Sie dies mit Hilfe des Diffusionsdiagramms ab.
- E) Berechnen Sie für die Bedingungen nach C) die Tauwasser- und Verdunstungswassermenge
- F) Kann der Feuchteschutznachweis geführt werden?