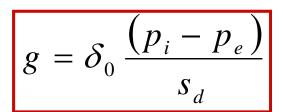
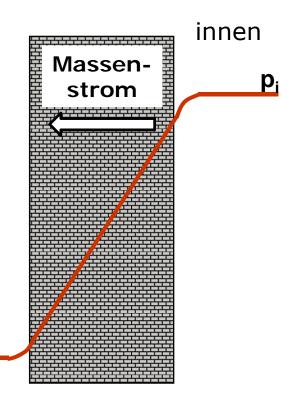

Bauphysik Feuchte – Die Normung (äquivalentes Perioden-Bilanzverfahren, ehemals "Glaser-Verfahren")

Prof. Dr.-Ing. Petra Rucker-Gramm


Vorlesungsunterlagen nur für studentische Zwecke. Eine Weitergabe oder Vervielfältigung, auch auszugsweise, ist nur nach schriftlicher Genehmigung durch die Verfasserin erlaubt.

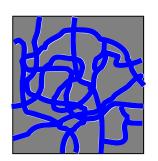
Transportmechanismen von Wasser



Dampfdiffusion

Wasserdampfdiffusionsstromdichte

- g Dampfstromdichte [kg/(m²·h)]
- p_{i/e} Partialdrücke der Innenbzw. Außenluft [Pa]
- $δ_0$ Wasserdampf-Diffusionsleitkoeffizient in ruhender Luft: $δ_0 = 2 \cdot 10^{-10} \, \text{kg/(m·s·Pa)}$
- s_d wasserdampfdiffusionsäquivalente Luftschichtdicke Dampfstromdichte [m]



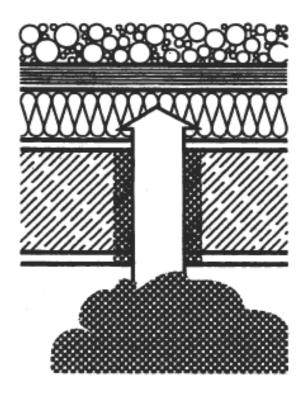
außen

 p_e

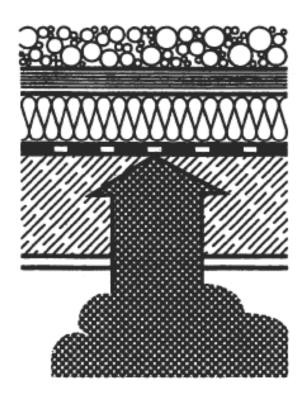
Materialwiderstand gegen Wasserdampfdiffusion

[Dr. Lay]

Bei Dampfdiffusion durch Materialschichten erhöhter Widerstand durch:


- Verhältnis der von den Poren eingenommenen Fläche zur gesamten Querschnittsfläche (Porosität)
- durch die Porenstruktur erzwungene Umwege
- Querschnittsveränderungen in den Porenkanälen

Berücksichtigung durch die Wasserdampfdiffusionswiderstandszahl µ


→ Formfaktor, der angibt, um welchen Faktor der Diffusionswiderstand eines Materials größer ist als der einer Luftschicht gleicher Dicke (μ_L=1)

μ-Wert

Baustoffe mit μ -Wert ≥ 1500 werden als Dampfsperren bezeichnet

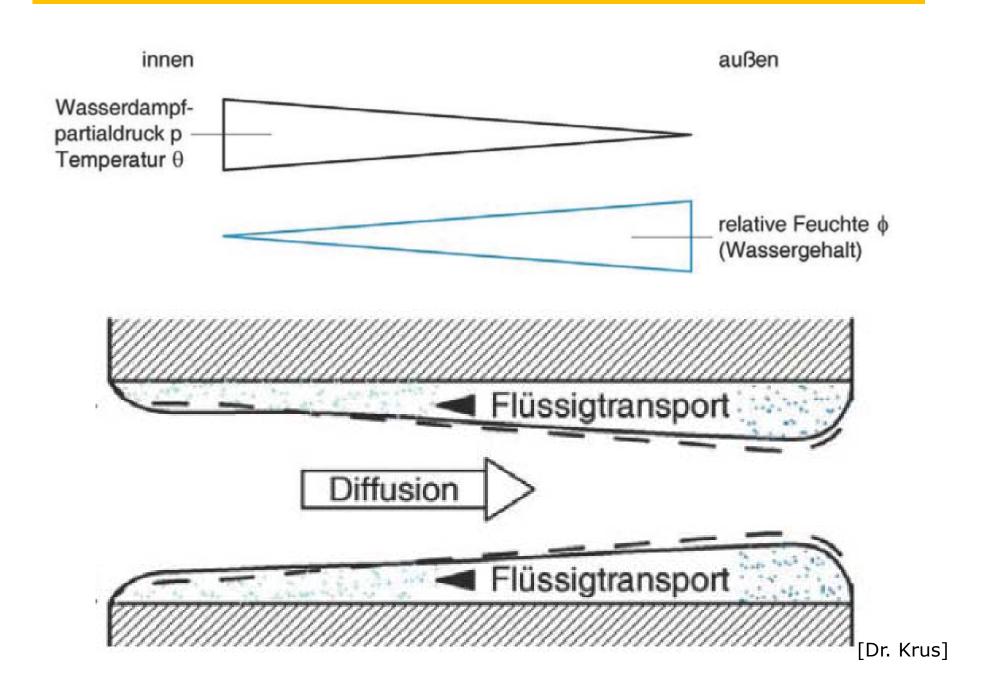
Konstruktion ohne Dampfsperre

Konstruktion mit Dampfsperre

Wasserdampfdiffusionsdurchlasswiderstand

$$s_d = \mu \times d$$

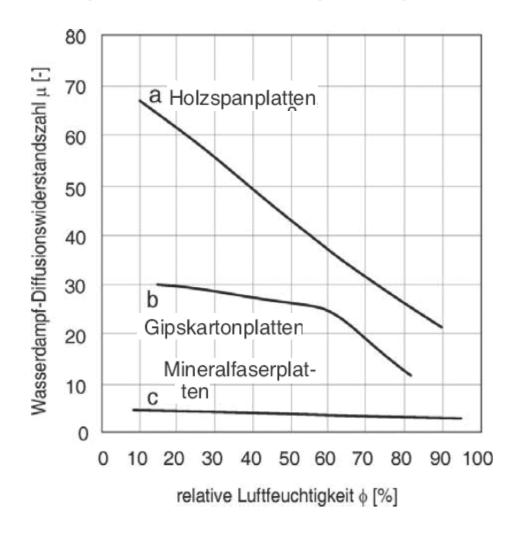
- d Dicke des Bauteils [m]
- μ Wasserdampfdiffusionswiderstandszahl [-]


DIN 4108-4/ DIN EN ISO 10456

-- Vornorm --

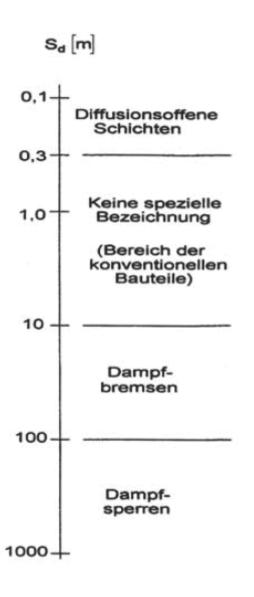
Tabelle 1 (fortgesetzt)

Zeile	Stoff	Rohdichte ^{a,b} p kg/m ³	Bemessungswert der Wärmeleitfähigkeit Å W/(m · K)	Richtwert der Wasserdampf- Diffusions- widerstands- zahl ^o			
1.3	Estriche	<u> </u>					
1.3.1	Asphalt	Siehe DIN EN 12542					
1.3.2	Zement-Estrich	(2 000)	1,4				
1.3.3	Anhydrit-Estrich	(2 100)	1,2	15/35			
1.3.4	Magnesia-Estrich	1 400	0,47	10/30			
		2 300	0,70]			
2	Beton-Bauteile						
2.1	Beton nach DIN EN 206-1	Siehe DIN EN 12542					
2.2	Leichtbeton und Stahlleichtbeton mit geschlossenem Gefüge nach DIN EN 206-1 und DIN 1045-2, hergestellt unter Verwendung von Zuschlägen mit porigem Gefüge nach DIN 4226-2, ohne Quarzsandzusatz ^a	800	0,39				
l		900	0,44				
l		1 000	0,49				
l		1 100	0,55				
l		1 200	0,62	1			
l		1 300	0,70	70/150			
i		1 400	0,79] !			
l		1 500	0,89	1			
l		1 600	1,0	1			
l		1 800	1,3]			
		2 000	1,6				
2.3	Dampfgehärteter Porenbeton nach DIN 4223-1	350	0,11				
l		400	0,13				
l		450	0,15				
l		500	0,15				
l		550	0,18				
i		600	0.19				


Oberflächendiffusion

Wasserdampfdiffusion -Feuchteeinfluss

DIN 4108-4: Richtwerte für μ Wertebereiche (z.B. Hochlochziegel: $\mu = 5 / 10$);

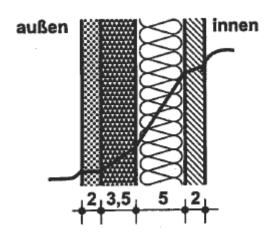

Im Anwendungsfall sind die ungünstigeren Werte zu verwenden!

Wasserdampfdiffusionsäquivalente Luftschichtdicke (s_d-Wert) eines Baumaterials

$$s_d = \mu \cdot d$$
 [m]

Sd-Wert

 $s_d \le 0.5$ diffusions**offene** Schicht


 $0.5 \le s_d \le 1500 \text{ diffusions}$ hemmende Schicht

 $s_d \ge 1500 \text{ diffusions}$ dichte Schicht

[Fischer et al: Lehrbuch der Bauphysik]

Bildmaßstäbe

Real-Bildmaßstab

2 cm Außenputz 3,5 cm Holzwolle Leichtbauplatte 5 cm Mineralwolle

2 cm Holzspanplatte

Hygrischer Bildmaßstab

"Diffusions-diagramm"

Klimabedingter Feuchteschutz nach DIN 4108-3: 2018-10

Berechnungsverfahren und Hinweise für die Planung und Ausführung

- Tauwasserschutz
- Schlagregenschutz

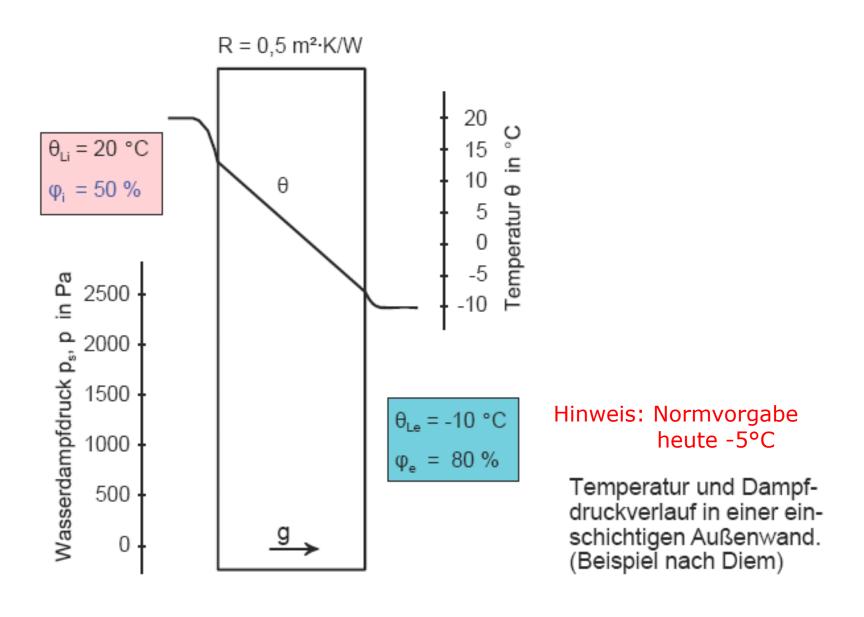
Vermeidung von Tauwasser

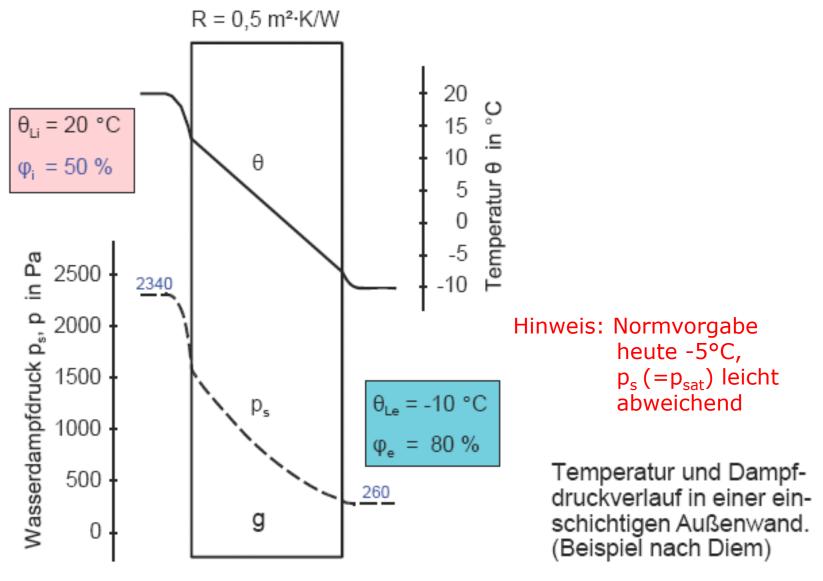
Maßnahmen gegen Tauwasserbildung an Raumoberflächen

- erhöhtes Lüften
- höhere Innentemperatur
- weniger Feuchteproduktion
- keine Möbel an Außenwänden

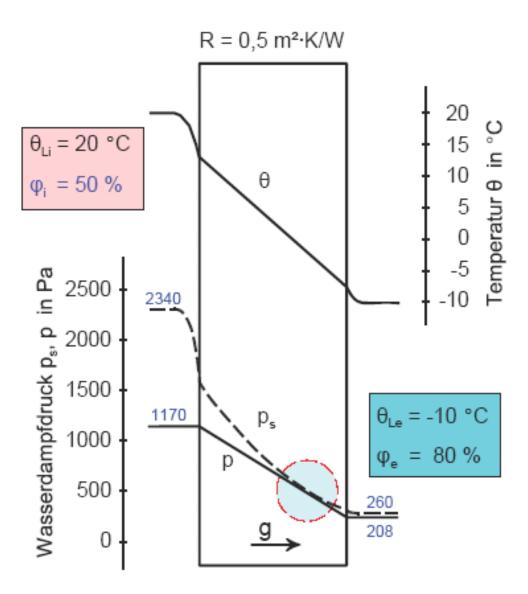
Vermeidung von Oberflächentauwasser

- Tauwasserbildung bei Abkühlung unter die Taupunkttemperatur
- zur Verhinderung muss gelten: $\theta_{Oi} > \theta_{S}$
- Dazu ist ein bestimmter Wärmedurchlasswiderstand R bzw. U-Wert erforderlich

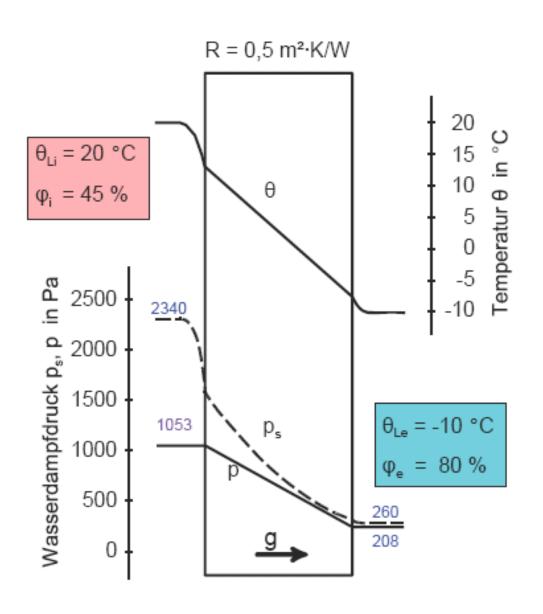

Vermeidung von Tauwasser


Tauwasser in Bauteilen infolge Wasserdampf-Diffusion

Ermittlung der Tauwassermenge im Inneren von Bauteilen durch ein graphisches Verfahren mittels eines Diffusionsdiagramms "Perioden-Bilanzverfahren" (früher: "Glaser-Verfahren")


Vorgehensweise

- Ermittlung der Temperaturverteilung über den Bauteilquerschnitt
- Ermittlung des Wasserdampfsättigungsdruckes p_{sat} über den Bauteilquerschnitt ausgehend von der Temperatur
- Verteilung des tatsächlichen Dampfdruckes im Profil



[Prof. Schulz]

Hinweis: Normvorgabe heute -5°C, p_s (= p_{sat}) leicht abweichend

Temperatur und Dampfdruckverlauf in einer einschichtigen Außenwand. (Beispiel nach Diem)

Hinweis: Normvorgabe heute -5°C, p_s (= p_{sat}) leicht abweichend

Temperatur und Dampfdruckverlauf in einer einschichtigen Außenwand. (Beispiel nach Diem)

Randbedingungen: Klima

Tabelle A.3 — Klimabedingungen für die Beurteilung der Tauwasserbildung und Verdunstung im Inneren von Bauteilen

Klima	Temperatur	Relative Luftfeuchte	Wasserdampf- teildruck	Dauer				
	θ	ϕ	p	t				
	°C	%	Pa	d	h	S		
Tauperiode von Dezember bis Februar								
Innenklima	20	50	1 168	90	2 160	7 776 · 10 ³		
Außenklima	-5	80	321	90				
Verdunstungsperiode von Juni bis August ^a								
Wasserdampfteildruck Innenklima			1 200					
Wasserdampfteildruck Außenklima			1 200					
Sättigungsdampfdruck im Tauwasserbereich: — Wände, die Aufenthaltsräume gegen Außenluft abschließen; Decken unter nicht ausgebauten Dachräumen			1 700	90	2 160	7 776 · 10 ³		
 Dächer, die Aufenthaltsräume gegen Außenluft abschließen 		2 000						

In der Verdunstungsperiode werden im Rahmen des Perioden-Bilanzverfahrens nicht die Temperaturen und Luftfeuchten, sondern nur die gerundeten Wasserdampfteildrücke als Klima-Randbedingung vorgegeben. [DIN 4108-3:1018-10]

Standard-Klimabedingungen ALTE NORM !!!!

	Tabelle A.1 — Vereinfachte Klimabedingungen						
Zeile	Klima	Temperatur <i>θ</i> °C	Relative Luftfeuchte ϕ %	Dau	d		
1	Tauperiode						
1.1	Außenklima ^a	-10	80	1 440	60		
1.2	Innenklima	20	50	1 440	00		
2	Verdunstungsperiode						
2.1	Wandbauteile und Decken unter nicht ausgebauten Dachräumen						
2.1.1	Außenklima		70				
2.1.2	Innenklima	12	70	2 160	90		
2.1.3	Klima im Tauwasserbereich		100				
2.2	Dächer, die Aufenthaltsräume gegen die Außenluft abschließen b						
2.2.1	Außenklima	12	70				
2.2.2	Temperatur der Dachoberfläche	20	_	2 160	90		
2.2.3	Innenklima	12	70				

a Gilt auch für nicht beheizte, belüftete Nebenräume, z. B. belüftete Dachräume, Garagen.

Vereinfachend k\u00f6nnen bei diesen D\u00e4chern auch die Klimabedingungen f\u00fcr Bauteile der Zeile 2.1 zu Grande gelegt werden.

Randbedingungen: Wärmeübergang

Wärmeübergangswiderstände R_s zur Berechnung der Temperaturverteilung für das Perioden-Bilanzverfahren:

$$R_{si} = 0.25 \text{ m}^2\text{K/W}$$

 $R_{se} = 0.04 \text{ m}^2\text{K/W}$

$$R_{se} = 0.04 \text{ m}^2 \text{K/W}$$

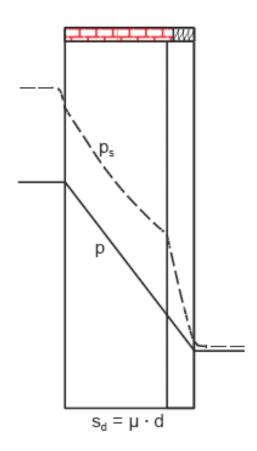
Achtung: Werte weichen von den Wärmeübergangswiderständen nach DIN EN ISO 6946 ab. (Werte nach alter Norm)

Randbedingungen: Stoffeigenschaften

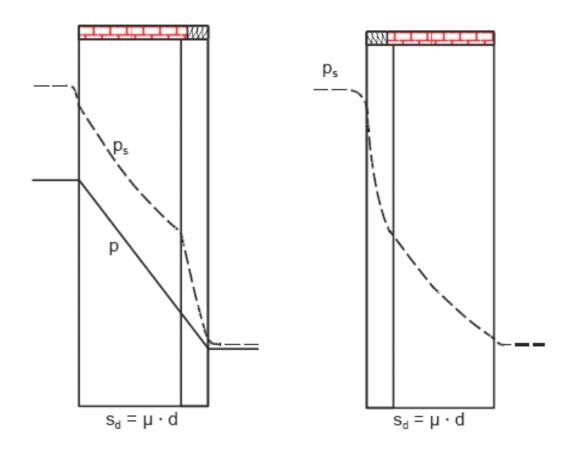
Die Wasserdampfdiffusionswiderstandszahlen μ sind aus DIN 4108-4 bzw. DIN EN ISO 10456 zu entnehmen.

Welcher µ-Wert ist zu verwenden?

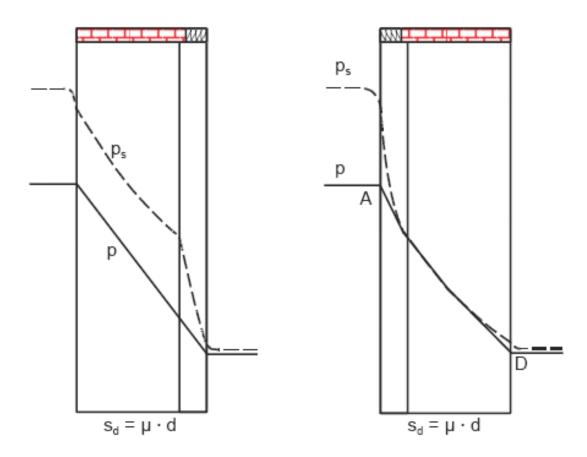
Im Rechenverfahren ist der für die jeweilige Schichtposition in der Tauperiode ungünstigere μ -Wert anzuwenden, welcher dann auch für die Verdunstungsperiode beizubehalten ist.

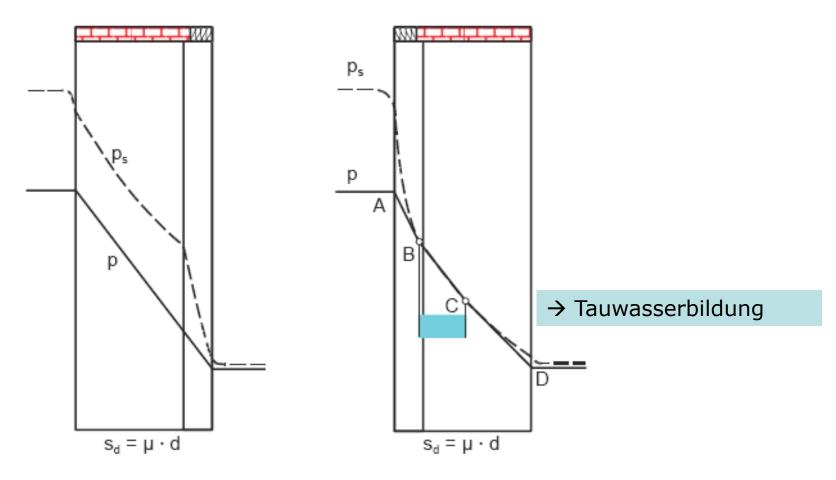

Schichten mit $s_d < 0.1 \text{ m}$

- außerseitig der Wärmedämmung: $s_d = 0.1 \text{ m}$
- sonst Untersuchung mit $s_{\rm d}=0.1~{\rm m}$ und $s_{\rm d}=0~{\rm m}$, kritischer Fall maßgebend


Luftschichten

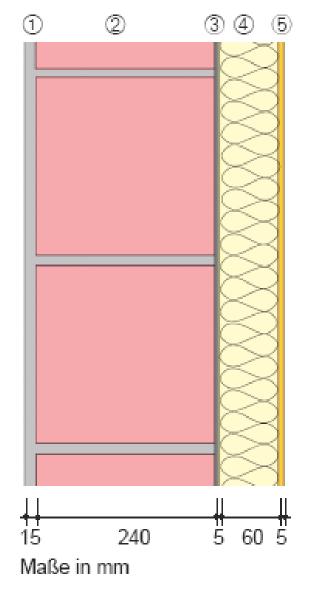
- R-Werte für die Temperaturberechnung (p_{sat}) nach DIN EN ISO 6946
- s_d -Werte für ruhende Luftschichten unabhängig von Lage und Dicke: $s_d = 0.01$ m


Dampfdruckverlauf in einer zweischichtigen Wand in Abhängigkeit von der Lage der Wärmedämmung


Dampfdruckverlauf in einer zweischichtigen Wand in Abhängigkeit von der Lage der Wärmedämmung

Dampfdruckverlauf in einer zweischichtigen Wand in Abhängigkeit von der Lage der Wärmedämmung

Dampfdruckverlauf in einer zweischichtigen Wand in Abhängigkeit von der Lage der Wärmedämmung



bis hier 11.12.2013

[Prof. Schulz, nach Diem]

Berechnungsbeispiel

außen

- 1: Gipsmörtel
- 2: Hochlochziegel ρ_R =1400 kg/m³
- 3: Zementmörtel
- 4: Polyurethan-Hartschaum (PUR) nach DIN EN 13165, Kategorie I, Nennwert 0,033
- 5: Kunstharzputz

Berechnungsbeispiel (A-D Wiederholung)

Aufgabenstellung

- A) Erfüllt der Wärmedurchlasswiderstand die Anforderungen an den Mindestwärmeschutz nach DIN 4108-2?
- B) Wie groß ist der Wärmedurchgangswiderstand bzw. der Wärmedurchgangskoeffizient der betrachteten Außenwand?
- C) Welche Temperatur sind an den Grenzen zwischen den einzelnen Schichten zu erwarten (Außenlufttemperatur: -5°C, Innenlufttemperatur: 20 °C)?
- D) Welcher Sättigungsdampfdruck ist an den Grenzen zwischen den einzelnen Schichten zu erwarten?
- E) Führen Sie den Feuchteschutznachweis nach DIN 4108-3.

Berechnungsbeispiel (A-D Wiederholung)

Aufgabenstellung

- A) Erfüllt der Wärmedurchlasswiderstand die Anforderungen an den Mindestwärmeschutz nach DIN 4108-2?
- B) Wie groß ist der Wärmedurchgangswiderstand bzw. der Wärmedurchgangskoeffizient der betrachteten Außenwand?
- C) Welche Temperatur sind an den Grenzen zwischen den einzelnen Schichten zu erwarten (Außenlufttemperatur: 10°C, Innenlufttemperatur: 20 °C)?
- D) Welcher Sättigungsdampfdruck ist an den Grenzen zwischen den einzelnen Schichten zu erwarten?
- E) Führen Sie den Feuchteschutznachweis nach DIN 4108-3.

Jehicht das lifeusions
Jehicht das lifeusions
NI. Em] E-] Im] Sant-1 [m] Rn (Richa) AT Em]

No Obegong inner

A Gipsmon kl 0,005

2 Hachloch nigel 0,24

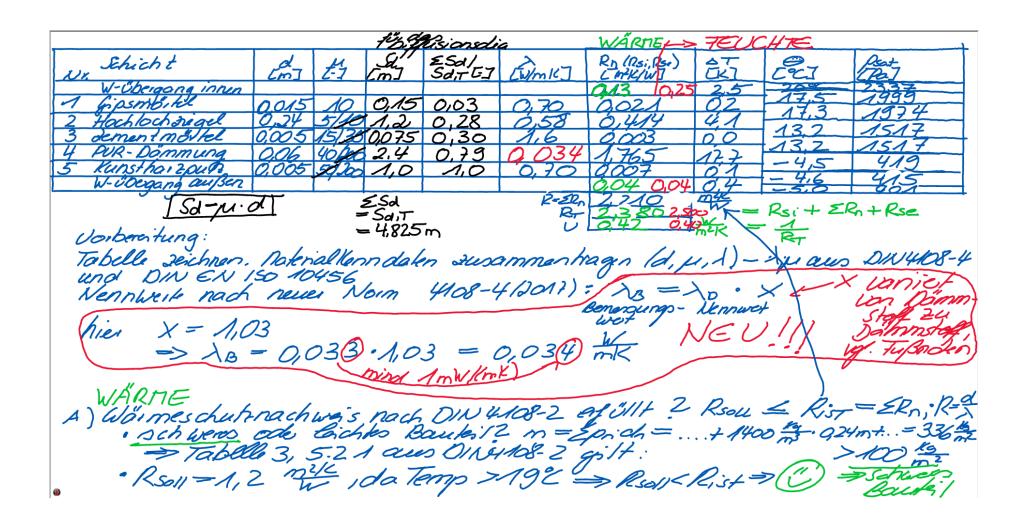
3 Lement mobile 0,005

4 PUR-Dömmung 0,06

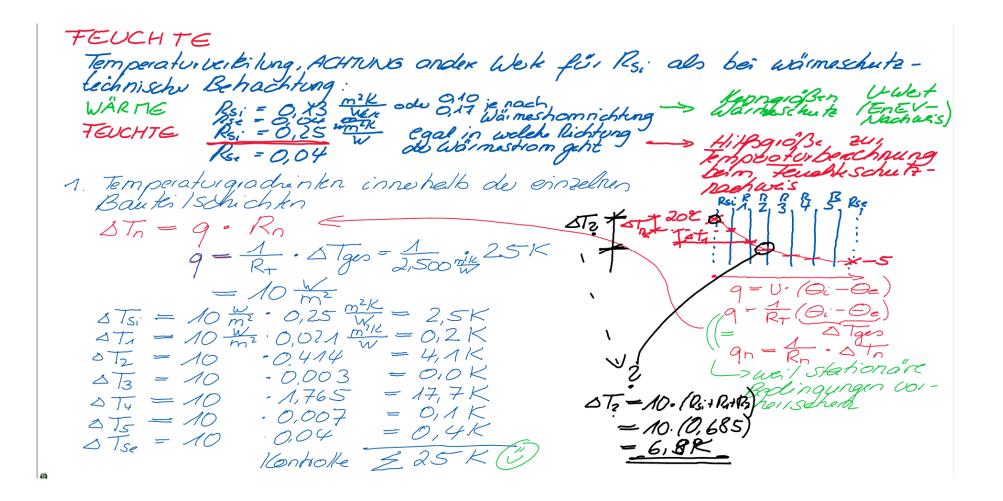
5 Kunsthar 2puts 0,005

W- Übegong außen

R=ERn


R
U

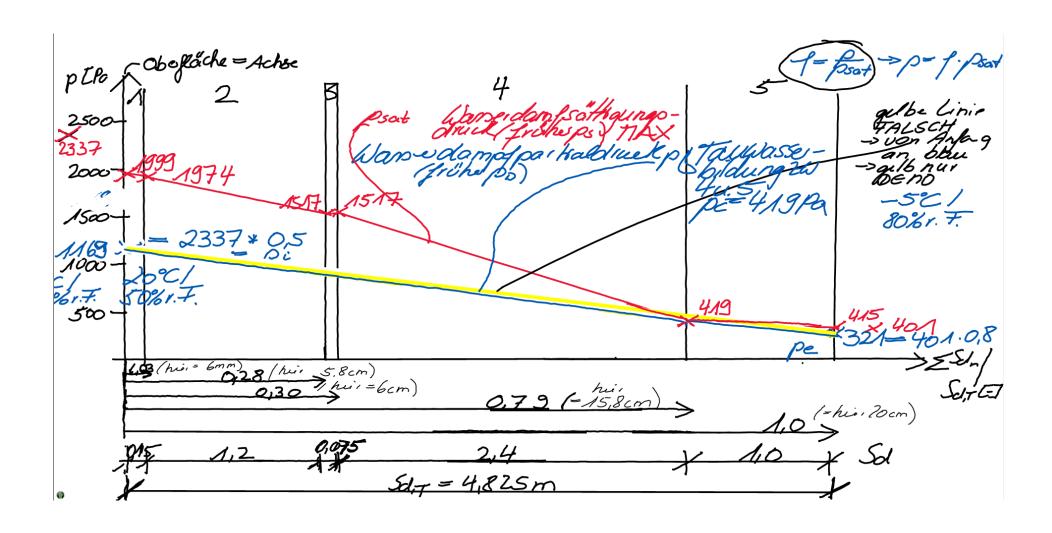
Voibercitung: Tobelle seichnen, Makrial Kenndalen zusammentragen (d., p.,)


), p. aus DIN 4108.4 und DINEN 150 10456

Achtung: im Video weicht die Umrechnung von Nenn- auf Bemessungswert von den aktuell gültigen Werten ab. In diesen Folien wurde die Aufgabe mit allen aktuell gültigen Kennwerten ermittelt. Ansonsten bleibt die Vorgehensweise die Gleiche!

Die ergänzenden Folien zu dem Übungsbeispiel enthalten zur besseren Nachvollziehbarkeit den Rechenweg entsprechend des Videos.

Achtung: im Video weicht die Umrechnung von Nenn- auf Bemessungswert von den aktuell gültigen Werten ab. Ansonsten bleibt die Vorgehensweise die Gleiche!



- 1. Überprüfung, ob mit Tauwasserausfall in der Winterperiode zu rechnen ist
- 2. Berechnung der Tauwassermenge
- 3. Berechnung der Verdunstungsmenge in der Sommerperiode

Uberprüfung der geforderten Kriterien

Klimabedingter Feuchteschutz nach DIN 4108-3: 2018-10

Berechnungsverfahren und Hinweise für die Planung und Ausführung

Berechnungsbeispiel 1

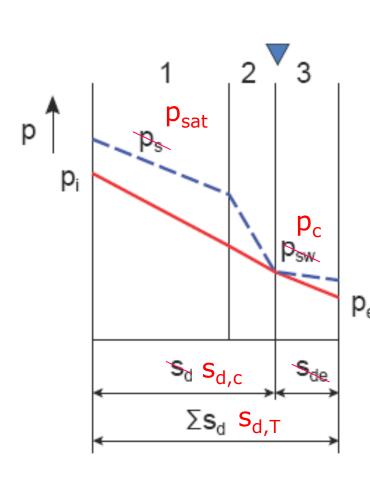
- Für die Wasserdampfdiffusionswiderstandszahl μ ist der für die Tauperiode ungünstigere Wert zu verwenden; dieser ist auch für die Verdunstungsperiode beizubehalten.

(s. Hinweis mit Verweis auf DIN 4108-3)

innen

→ Gipsputz: **10**

→ Hochlochziegel: **5** oder 10?

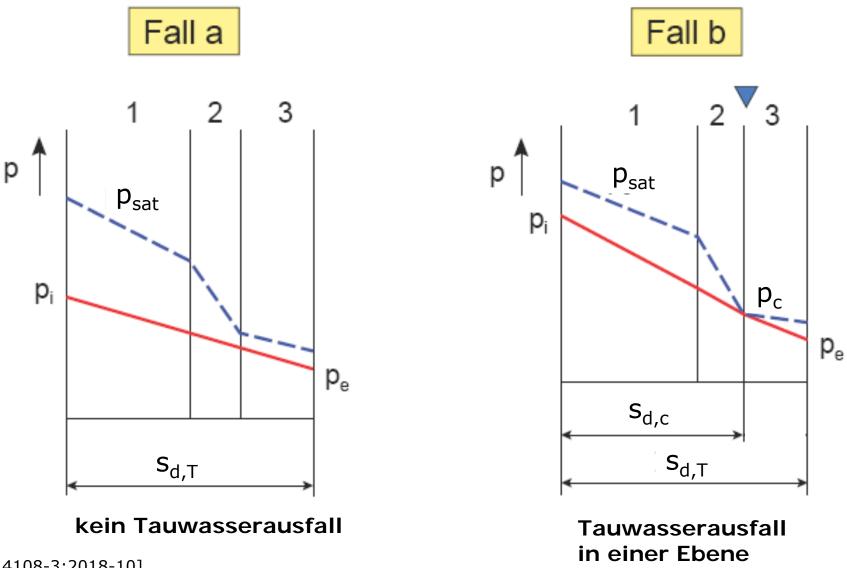

→ Zementmörtel: **15** oder 35?

→ Wärmedämmung: **40** oder 200?

→ Kunstharzputz: 50 oder **200**?

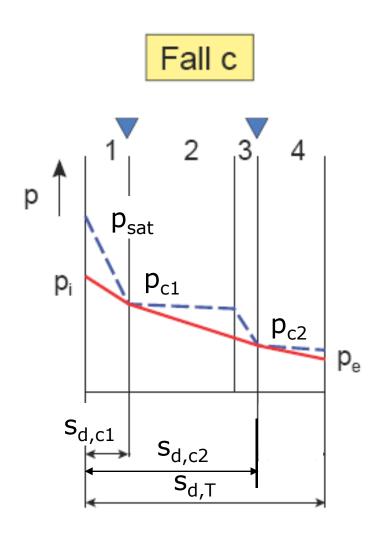
außen

1. Überprüfung, ob mit Tauwasserausfall in der Winterperiode zu rechnen ist

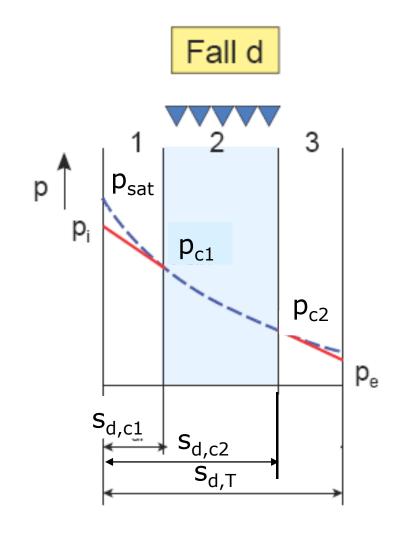

"Berechnung"

- 1. Temperatur θ an den Schichtgrenzen
- 2. Sättigungsdampfdrücke p_s p_{sat} an den Schichtgrenzen
- 3. Wasserdampfpartialdrücke p_i und p_e an den Oberflächen
- 4. S_d-Wert der einzelnen Schichten

Grafische Auswertung


- 1. Wasserdampfsättigungskurve p_s p_{sat} über der wasserdampfdiffusionsäquivalenten Luftschichtdicke s_d $s_d/s_{d,T}$ auftragen.
- Kurve des Wasserdampfpartialdrucks p konstruieren; "Methode des gespannten Seiles" – Bestimmung der Tauwasserbereiche

Mögliche Ergebnisse der grafischen Auswertung



[DIN 4108-3:2018-10]

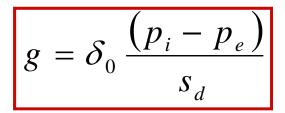
Äquivalentes Perioden-Bilanzverfahren: mögliche Fälle

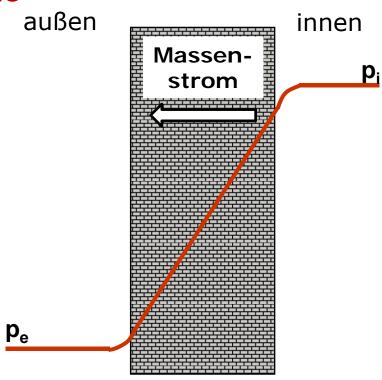
Tauwasserausfall in zwei Ebenen

Tauwasserausfall in einem Bereich

[DIN 4108-3:2018-10]

- 1. Überprüfung, ob mit Tauwasserausfall in der Winterperiode zu rechnen ist
- 2. Berechnung der Tauwassermenge
- 3. Berechnung der Verdunstungsmenge in der Sommerperiode


Überprüfung der geforderten Kriterien


Klimabedingter Feuchteschutz nach DIN 4108-3: 2018-10

Berechnungsverfahren und Hinweise für die Planung und Ausführung

Dampfdiffusion

Wasserdampfdiffusionsstromdichte

- g Dampfstromdichte [kg/(m²·h)]
- p_{i/e} Partialdrücke der Innenbzw. Außenluft [Pa]
- $δ_0$ Wasserdampf-Diffusionsleitkoeffizient in ruhender Luft: $δ_0 = 2 \cdot 10^{-10} \, \text{kg/(m·s·Pa)}$

[DIN 4108-3:2018-10]

Dampfdiffusion

Dampfdiffusion

Massenstrom innen

 $g = \frac{(p_i - p_e)}{Z}$

g Dampfstromdichte [kg/(m²·h)]

p_{i/e} Partialdrücke der Innenbzw. Außenluft [Pa]

Z Wasserdampfdiffusionsdurchlasswiderstand eines Baustoffs [m²·h·Pa/kg]

 p_e

außen

mit: $Z = 1.5 \times 10^6 \times \mu \times d$

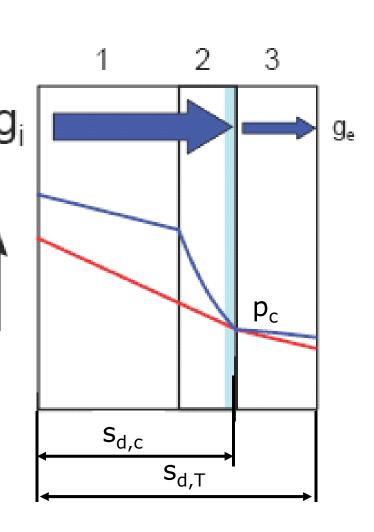
d_M Dicke des Bauteils [m]

M

Wasserdampfdiffusionswiderstandszahl [-]

Tauwasserausfall in einer Ebene des Bauteils

Diffusionsstromdichte zur Tauwasserebene


$$g_{c} = \delta_{0} \left(\frac{p_{i} - p_{c}}{s_{d,c}} - \frac{p_{c} - p_{e}}{s_{d,T} - s_{d,c}} \right)$$

g_i
Diffusionsstromdichte
vom Innenraum zur
Tauwasserebene

g_e
 Diffusions stromdichte
 von der
 Tauwasser ebene nach
 außen

Tauwassermasse in der Tauwasserebene

$$M_{\mathbf{c}} = g_{\mathbf{c}} \times t_{\mathbf{c}}$$

[DIN 4108-3:2018-10] [Prof. Schulz]

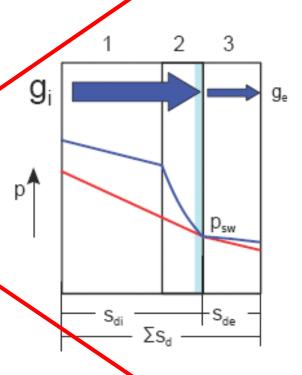
Diffusionsberechnungen

Tauwasserausfall in einer Ebene des Bauteils

Diffusionsstromdichte von der raumseitigen Bauteiloberfläche bis zur Tauwasserebene

$$g_i = \frac{p_i - p_{sw}}{Z_i}$$

mit
$$Z_i = 1.5 \cdot 10^6 \cdot \text{sd}_i$$


Diffusionsstromdichte von der Tauwasserebene bis zur außenliegenden Bauteiloberfläche

$$g_e = \frac{p_{sw} - p_e}{Z_e}$$

mit
$$Z_e = 1.5 \cdot 10^6 \cdot \text{sd}_e$$

Während der Tauperiode in der Ebene ausfallende Tauwassermenge

$$m_{W} = t_T \cdot (g_i - g_e)$$
 in kg/m²

Berchnung der Tauwansermenge im Wink (= Taupenioole)

Diffusionsshomdichte $g_c = \delta_0 \cdot \left(\frac{p_i - p_c}{Sa_{ic}} - \frac{p_c - p_e}{Sa_{ir} - Sa_{ir}} \right)$ mit: So = 2.10 10 Kg m.s.Pa mac morning 9 $p_i = p_{si} \cdot f = 2337 \cdot 0.5 = 1169 \text{ fa}$ $p_e = p_{se} \cdot f = 401 \cdot 0.8 = 321 \text{ fa}$ $p_c = 419 \text{ Pa (aus Diagramm)}$ $S_{d,r} = 4.825 \text{ m (aus Diagramm)}$ Sd,c = Sd, + Sdz + Sd3 + Sd4 = 3,825m (So, -- Sdc) = 1,0 m $= g_{c} = 2.10^{-10} \frac{kg}{m.8.9a} \cdot \left(\frac{1169Pa - 419Pa}{3,825m} - \frac{419Pa - 321Pa}{(4,825 - 3,825)n} \right)$ $= 1,96.10^{-8} \frac{kg}{m^{2}c}$ $M_c = g_c \cdot t_c$ = $196.10^{-8} \frac{kg}{m^2 8} \cdot 7776.108$ = 0,15 $\frac{kg}{m^2}$ --- foll in du Taupenode $< 1.0 \frac{kg}{m^2} => Anfordung 2.620.3. nach$ Norm extell

Berechnungsbeispiel 1

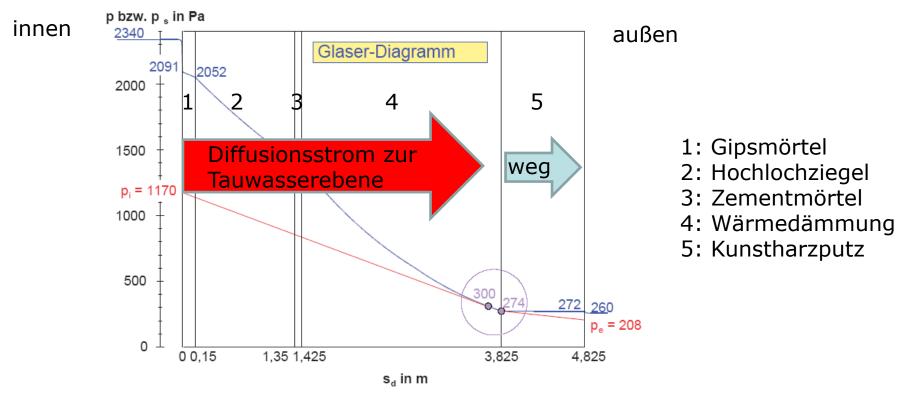
- Für die Wasserdampfdiffusionswiderstandszahl μ ist der für die Tauperiode ungünstigere Wert zu verwenden; dieser ist auch für die Verdunstungsperiode beizubehalten.

(s. Hinweis mit Verweis auf DIN 4108-3)

innen

→ Gipsputz: **10**

→ Hochlochziegel: **5** oder 10?


→ Zementmörtel: **15** oder 35?

→ Wärmedämmung: **40** oder 200?

→ Kunstharzputz: 50 oder **200**?

außen

- Für die Wasserdampfdiffusionswiderstandszahl μ ist der für die Tauperiode **ungünstigere** Wert zu verwenden; dieser ist auch für die Verdunstungsperiode beizubehalten. (s. Hinweis)

Was sind ungünstige µ-Werte?

- 1. Überprüfung, ob mit Tauwasserausfall in der Winterperiode zu rechnen ist
- 2. Berechnung der Tauwassermenge
- 3. Berechnung der Verdunstungsmenge in der Sommerperiode

Überprüfung der geforderten Kriterien

Klimabedingter Feuchteschutz nach DIN 4108-3: 2018-10

Berechnungsverfahren und Hinweise für die Planung und Ausführung

Randbedingungen: Klima

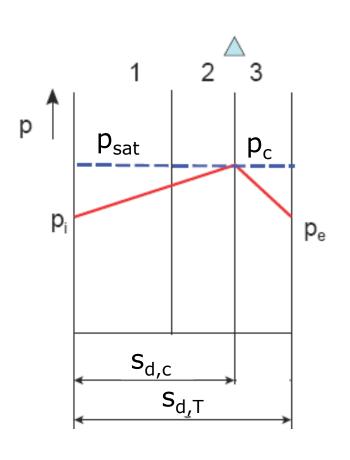
Tabelle A.3 — Klimabedingungen für die Beurteilung der Tauwasserbildung und Verdunstung im Inneren von Bauteilen

Klima	Temperatur	Relative Luftfeuchte	Wasserdampf- teildruck	Dauer						
	θ	ϕ	p	t						
	°C	%	Ра	d	h	S				
Tauperiode von Dezember bis Februar										
Innenklima	20	50	1 168	90	2 160	7 776 · 10 ³				
Außenklima	-5	80	321	90						
Verdunstungsperiode von Juni bis August ^a										
Wasserdampfteildruck Innenklima			1 200							
Wasserdampfteildruck Außenklima			1 200							
Sättigungsdampfdruck im Tauwasserbereich:										
 Wände, die Aufenthaltsräume gegen Außenluft abschließen; Decken unter nicht ausgebauten Dachräumen 			1 700	90	2 160	7 776 · 10 ³				
— Dächer, die Aufe abschließen	enthaltsräume ge	gen Außenluft	2 000							

[DIN 4108-3:2018-10]

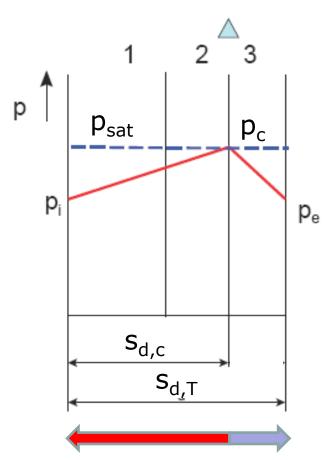
sondern nur die gerundeten Wasserdampfteildrücke als Klima-Randbedingung vorgegeben.

Standard-Klimabedingungen


Tabelle A.1 — Vereinfachte Klimabedingungen

		Temperatur	Relative Luftfeuchte	Dauer						
Zeile	Klima	θ	φ		d					
		°C	%		u					
1	Tauperiode									
1.1	Außenklima ^a	-10	80	1 440	60					
1.2	Innenklima	20	50	1 440						
2	Verdunstungsperiode									
2.1	Wandbauteile und Decken unter nicht ausgebauten Dachräumen									
2.1.1	Außenklima									
2.1.2	Innenklima	12	70	2 160	90					
2.1.3	Klima im Tauwasserbereich		100							
2.2	Dächer, die Aufenthaltsräume gegen die Außenluft abschließen b									
2.2.1	Außenklima	12	70							
2.2.2	Temperatur der Dachoberfläche	20	_	2 160	90					
2.2.3	Innenklima	12	70							

a Gilt auch für nicht beheizte, belüftete Nebenräume, z. B. belüftete Dachräume, Garagen.


b Vereinfachend k\u00f6nnen bei diesen D\u00e4chern auch die Klimabedingungen f\u00fcr Bauteile der Zeile 2.1 zu Gr\u00fcnde gelegt werden.

3. Berechnung der Verdunstungswassermenge in der Sommerperiode

- Wasserdampfpartial-drücke p_c an den Schicht(en)/-grenzen zum Tauwasserbereich (entsprechend Klima)
- 2. Wasserdampfpartialdrücke an den Oberflächen (entsprechend Klima)
- 3. Herauslesen der s_d-Werte (vgl. Tauperiode)
- 4. Bestimmung der Verdunstungsmenge

Verdunstungswassermenge aus einer Ebene des Bauteils (Fall b)

Diffusionsstromdichte aus der Tauwasserebene

$$g_{\text{ev}} = \delta_0 \left(\frac{p_{\text{c}} - p_{\text{i}}}{s_{\text{d,c}}} + \frac{p_{\text{c}} - p_{\text{e}}}{s_{\text{d,T}} - s_{\text{d,c}}} \right)$$

Tauwassermasse aus der Tauwasserebene

$$M_{\text{ev}} = g_{\text{ev}} \times t_{\text{ev}}$$

Tauwasserausfall in einer Ebene, z. B. zwischen den Schichten 2 und 3

Berechnung der Verdunstungswensemenge im Somme (= Verdunstungsperiode) pi = 1200 Pa, pe = 1200 Pa, pc = 1700 Pa (ugl. Normblima) 1 2 3 4
Sdic = 3,825 m; (Sdir-Sdic) = 1 m ger = So. (Pc-Pi + Pr-Pe approcedent Austrocknung ton d. Taugi ge in beide Richtung ton d. Taugi ge Solic Sol = 2.10 10 Kg / (1700-1200) + (1700-1200) 10m = 1,26 · 10-7 kg $H_{ev} = g_{ev} \cdot t_{ev} = 1,26 \cdot 10^{-2} \frac{kg}{m^2} \cdot 7776 \cdot 10^3 = 0,98 \frac{kg}{m^2}$ $\rightarrow tiocknet im Somme$ (0,15 kg) (0,98 kg)

- 1. Überprüfung, ob mit Tauwasserausfall in der Winterperiode zu rechnen ist
- 2. Berechnung der Tauwassermenge
- 3. Berechnung der Verdunstungsmenge in der Sommerperiode

Überprüfung der geforderten Kriterien

Klimabedingter Feuchteschutz nach DIN 4108-3: 2018-10

Berechnungsverfahren und Hinweise für die Planung und Ausführung

Anforderungen nach DIN 4108-3

Tauwasserbildung im Inneren von Bauteilen, die durch Erhöhung der Stoff-Feuchte von Bau- und Wärmedämmstoffen zu Materialschädigungen oder zu Beeinträchtigungen der Funktionssicherheit führt, ist zu vermeiden. Sie gilt als unschädlich, wenn die wesentlichen Anforderungen, z.B. Wärmeschutz, Standsicherheit, sichergestellt sind. Dies wird in der Regel erreicht, wenn die in a) bis d) aufgeführten Bedingungen erfüllt sind:

- a) die Baustoffe, die mit dem Tauwasser in Berührung kommen, dürfen nicht geschädigt werden (z. B. durch Korrosion, Pilzbefall);
- b) das während der Tauperiode im Innern des Bauteils anfallende Wasser muss während der Verdunstungsperiode wieder an die Umgebung abgegeben werden können, d. h. $M_c \le M_{eV}$;
- bei Dächern und Wänden gegen Außenluft sowie bei Decken unter nicht ausgebauten Dachräumen darf im Bauteilquerschnitt eine maximale flächenbezogene Tauwassermasse $M_{\rm c}$ von insgesamt 1,0 kg/m² (allgemein) bzw. 0,5 kg/m² (an Berührungsflächen von Schichten, von denen mindestens eine nicht kapillar wasseraufnahmefähig ist) nicht überschritten werden. Festlegungen für Holzbauteile siehe DIN 68800-2;
 - ANMERKUNG Kapillar nicht wasseraufnahmefähige Schichten sind z. B. Metalle, Folien und Normalbeton nach DIN 1045-2, die überwiegende Zahl der Dämmstoffe aus Schaumkunststoffen oder Mineralwolle oder Stoffe mit $W_{\rm W}$ < 0,5 kg/(m²h^{0,5}).
- d) bei Holz ist eine Erhöhung des massebezogenen Feuchtegehaltes *u* um mehr als 5 %, bei Holzwerkstoffen um mehr als 3 % unzulässig. Diese Grenzen gelten nicht für Holzwolle-Leichtbauplatten und Mehrschicht-Leichtbauplatten nach DIN EN 13168.

Anforderungen:

Nach DIN 4108 müssen nachweispflichtige Bauteile folgende Anforderungen an den Tauwasserschutz erfüllen:

- 1. Die während der Tauperiode anfallende Tauwassermenge M_c darf nicht größer als die Verdunstungsmenge $M_{\rm ev}$ sein.
- 2. Bei Dach- und Wandkonstruktionen muss gelten: $M_C \le 1 \text{ kg/m}^2$
- 3. An Berührungsflächen von kapillar nicht wasseraufnahmefähigen Schichten, $M_c \le 0.5 \text{ kg/m}^2$
- 4. Die Baustoffe, die mit dem Tauwasser in Berührung kommen, dürfen nicht beschädigt werden (z.B. durch Korrosion, Pilzbefall).
- 5. Unzulässig sind folgende Erhöhungen des massebezogenen Feuchtegehaltes:

Holz um mehr als 5 % Holzwerkstoffe um mehr als 3 %

Vereinfachungen:

- keine Kopplung zwischen Wärme- und Feuchtetransport
- keine Feuchtespeicherung
- kein Flüssigtransport
- stationäre Randbedingungen ohne Strahlung und Niederschlag

Grenzen des Perioden-Bilanzverfahrens (ehemals Glaser-Verfahrens)

<u>Anwendungsgrenzen (nicht erfassbar sind):</u>

- Austrocknung von Baufeuchte
- Schlagregeneinflüsse
- Sommerkondensation
- Tauwasserbildung auf Außenbauteilen durch nächtliche Unterkühlung
- Aufsteigende Feuchte
- Feuchtepufferungseffekte
- Energetische Auswirkungen der Feuchte
- → Das Perioden-Bilanzverfahren liefert dann zutreffende Ergebnisse, wenn der Feuchtetransport maßgeblich nur durch Dampfdiffusion erfolgt.