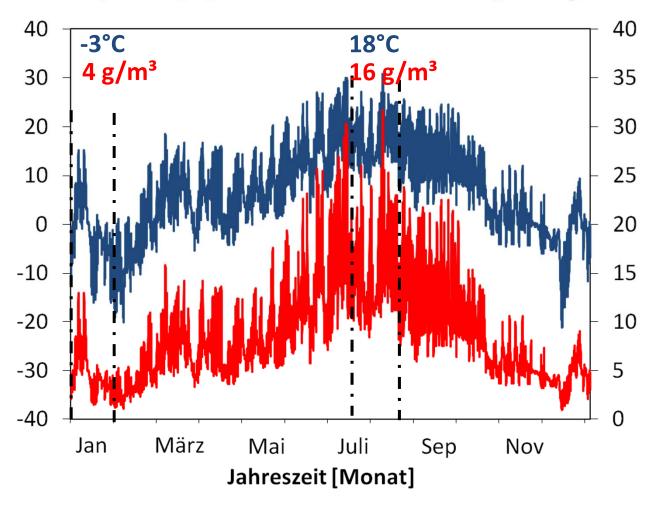
Bauphysik Raumklima (Fortsetzung)

Prof. Dr.-Ing. Petra Rucker-Gramm

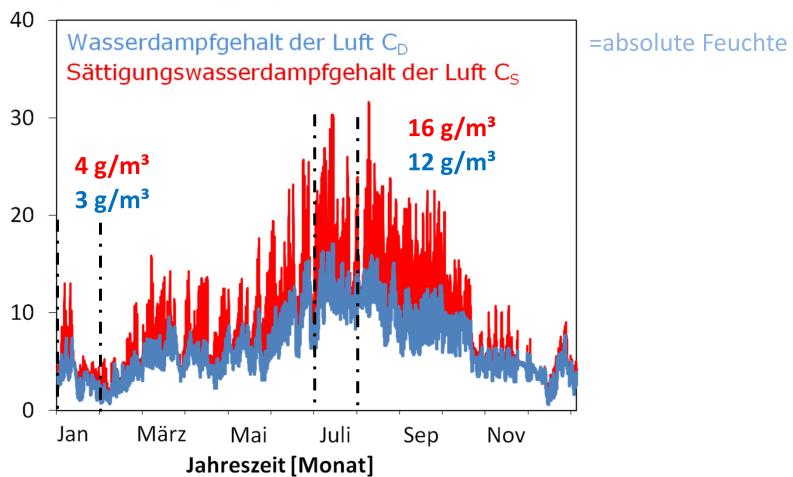
Vorlesungsunterlagen nur für studentische Zwecke. Eine Weitergabe oder Vervielfältigung, ist nur nach schriftlicher Genehmigung auch auszugsweise, durch die Verfasserin erlaubt. 1

Wasserdampfgehalt der Luft

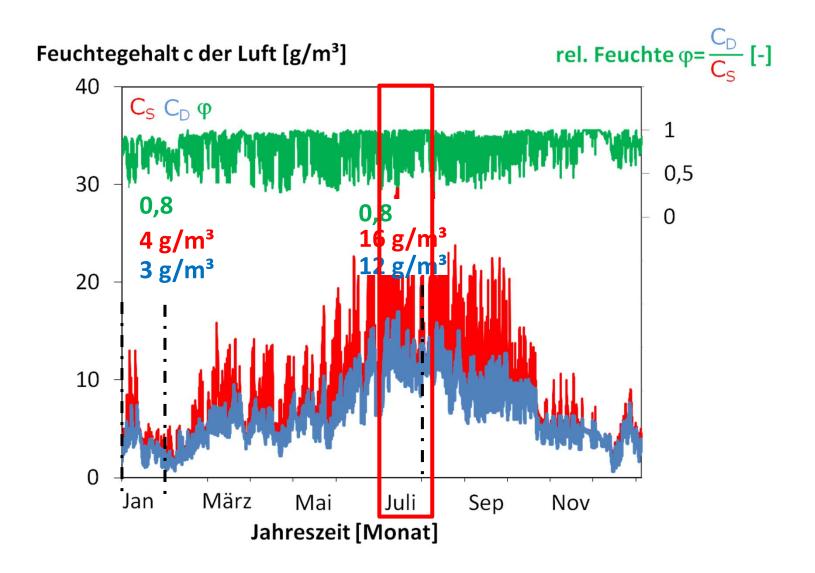

$$c_s$$
= 17,5 g/m³ p_s = 2337 Pa c_s = 872 Pa c_s = 872 Pa

- Luft nimmt in Abhängigkeit von ihrer Temperatur nur eine bestimmte Menge Wasserdampf $(=Wasserdampfsättigungskonzentration c_s)$ auf.
- Der Partialdruck des Wasserdampfs p_D kann temperaturabhängig nur einen bestimmten maximalen Wert (= Wasserdampfsättigungsdruck p_S) annehmen.
- Das Verhältnis zwischen tatsächlicher Konzentration c bzw. Dampfdruck p_D und den maximal möglichen Werten cs bzw. ps ist die relative Luftfeuchte φ:

$$\varphi = \frac{c}{c_s} = \frac{p_D}{p_s}$$

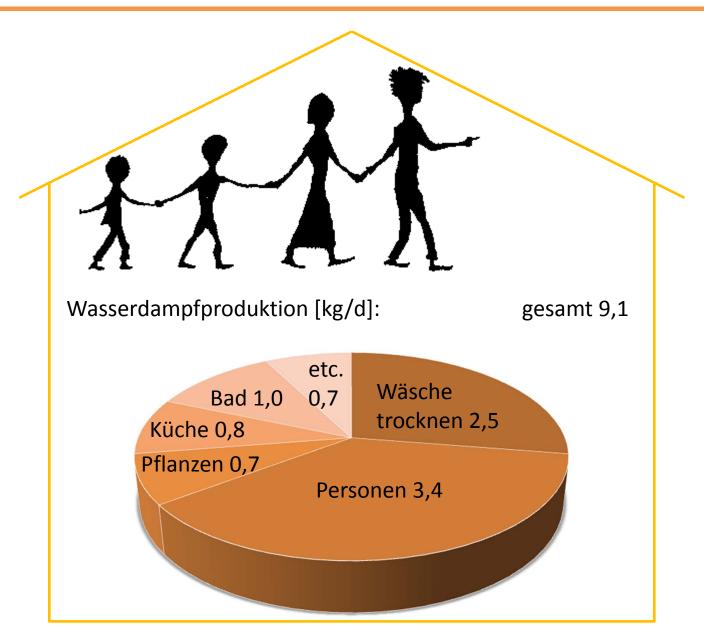

Außenlufttemperatur [°C]

max. Feuchtegehalt c_s der Luft [g/m³]



tatsächlicher (c_D) und max. Wasserdampfgehalt (c_S)der Luft

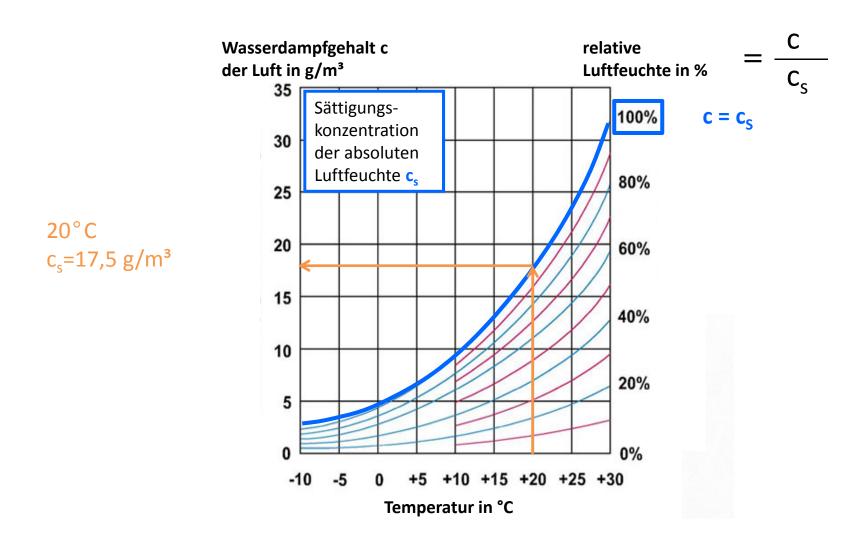
Feuchtegehalt c der Luft [g/m³]



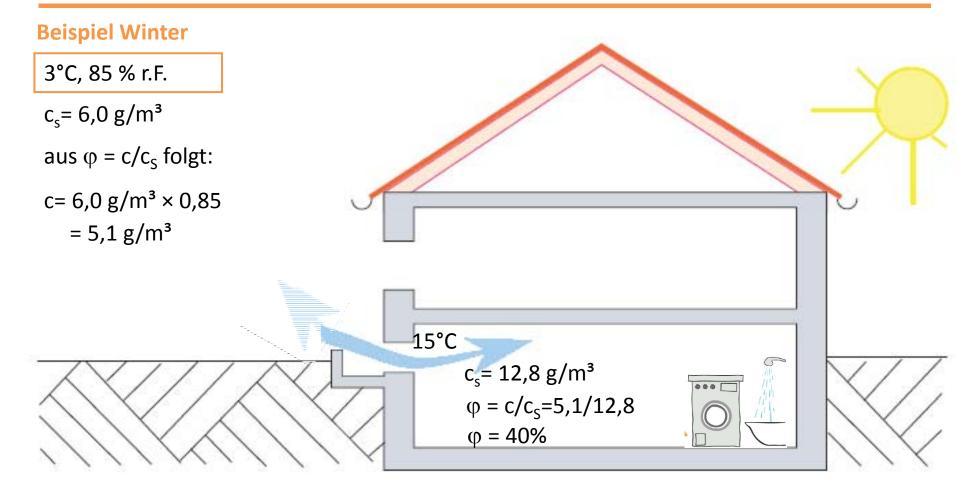
Die Außenluft enthält im Sommer rd. viermal so viel Feuchte wie im Winter.

Die relative Feuchte liegt relativ konstant über das Jahr hinweg bei rd. 80 %r.F..

Feuchteproduktion im Innenraum

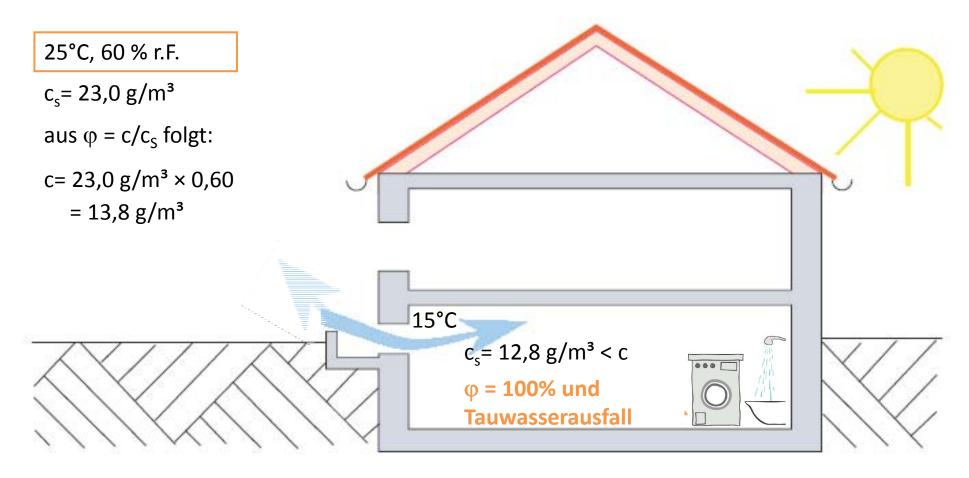

Relative Feuchte und Taupunktunterschreitung

$$\varphi = \frac{c}{c_s} = \frac{p_D}{p_s}$$

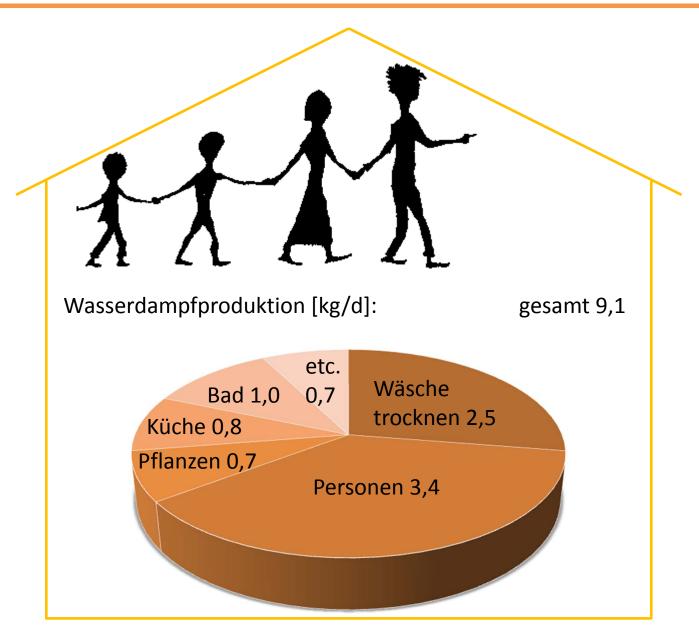

Die relative Luftfeuchte ϕ nimmt Werte zwischen 0 und 1 bzw. 0 % r.F. und 100 % r.F. an

→ Tauwasserausfall sobald φ ≥ 100 % r.F., d.h. : absolute Feuchte $c > c_s$ bzw. Wasserdampfpartialdruck $p_p > p_s$

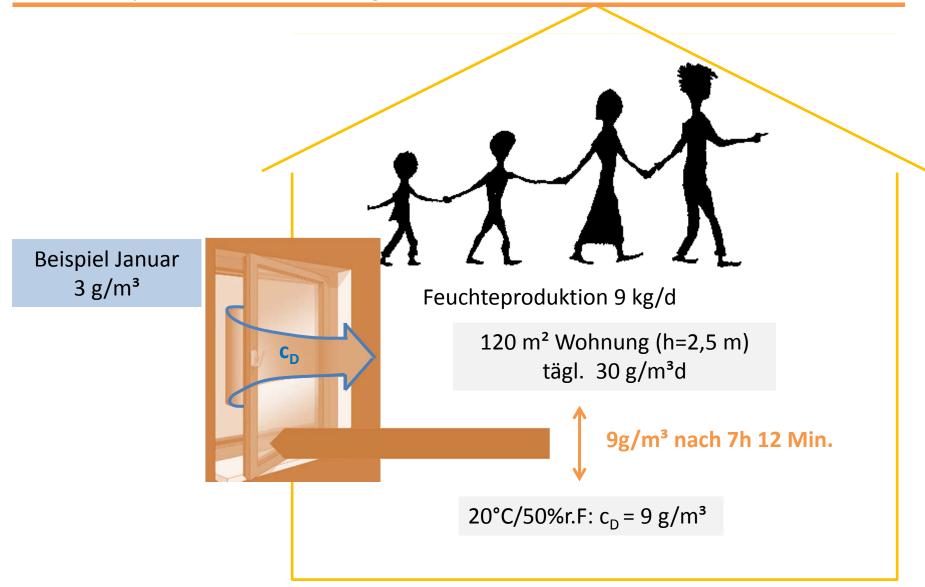
Wasserdampfsättigungsgehalt c_s (max. Feuchtegehalt)


Lüftungsfalle: Taupunktunterschreitungen an den Kellerwänden?

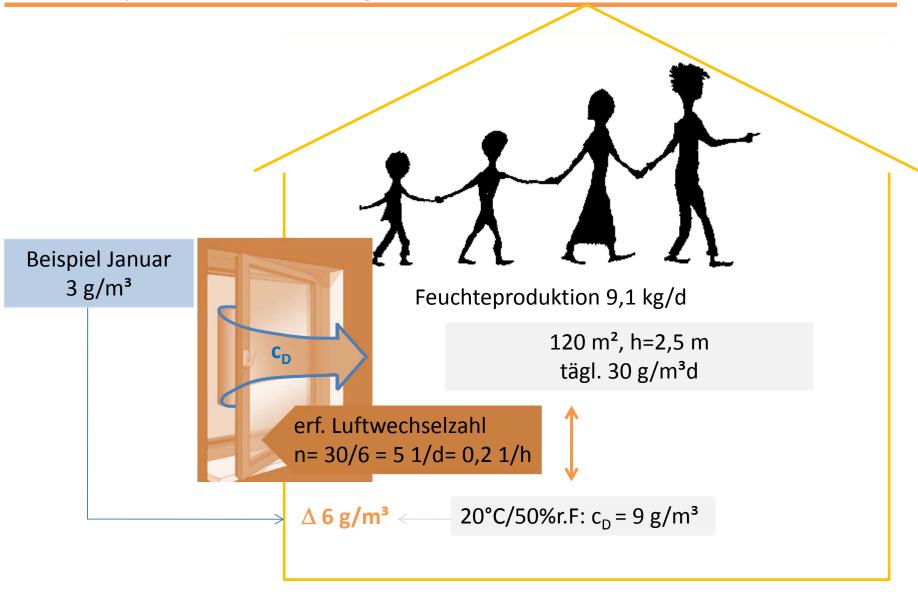
→ In der Heizperiode ist hauptsächlich nutzungsbedingte Feuchte durch Lüftung abzuführen.


Lüftungsfalle: Taupunktunterschreitungen an den Kellerwänden?

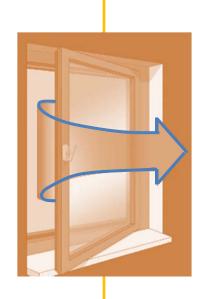
Beispiel Sommer



→ Im Sommer kann die Raumluftfeuchte nur mit vorgetrockneter Außenluft abgeführt werden.


Feuchtequellen in Innenraumen

Feuchtequellen und Lüftung


Feuchtequellen und Lüftung

April (c = 7 g/m³) \rightarrow Δ 2 g/m³ \rightarrow n=0,6 1/h Juli (c = 12 g/m³) \rightarrow Δ >0 g/m³ \rightarrow gezieltes Lüften erforderlich

Lüftung

Luftwechselzahlen n je nach Lüftungsart [1/h]

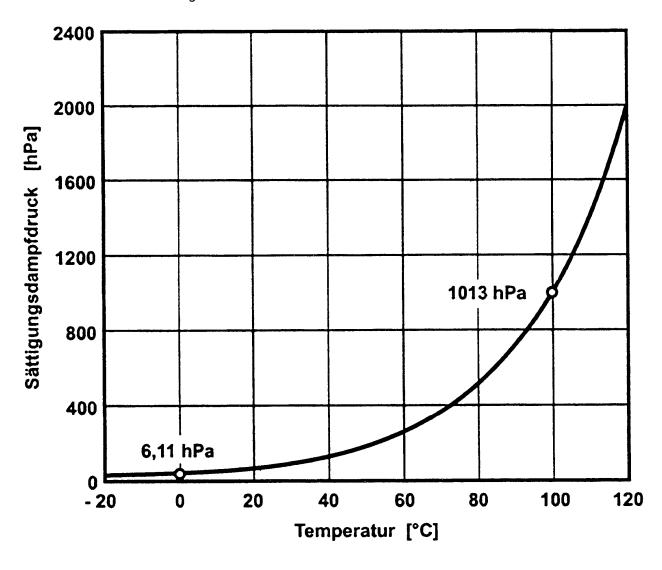
Fenster und Türen dicht	0,1 - <mark>0,3</mark>
Fenster gekippt:	0,8 - 2,5
Fenster ganz offen:	9 – 15
Querlüftung	20 - 40

Wasserdampf 4-Personen-Haushalt (120 m²) n = 0,2 (=5 \times Luftaustausch am Tag)

Minuten (\emptyset)

Fenster gekippt (n=0,8-2,5)	248
Fenster offen (n=9-15)	27
"Durchzug" (20-40)	11

Wasserdampfpartialdruck p_D


Zusammenhang zwischen dem Wasserdampfpartialdruck p in der Luft und der Konzentration von Wasserdampf in der Luft c [g/m³]:

$$c = \frac{p}{R_D \cdot T}$$

R_D...Gaskonstante für Wasserdampf (= 461,5 [J/(kg·K)])

T Thermodynamische Temperatur (=273,15+ 3) [K]

Sättigungsdampfdruck p_s

Wasserdampfsättigungsdruck p_s nach DIN 4108-3 NEU 2018

Tempera- tur in	Sättigungsdampfdruck, in Pa, für Temperaturschritte in Zehntel °C									
°C	,0	,1	,2	,3	,4	,5	,6	,7	,8	,9
30	4241	4265	4289	4314	4339	4364	4389	4414	4439	4464
29	4003	4026	4050	4073	4097	4120	4144	4168	4192	4216
28	3778	3800	3822	3844	3867	3889	3912	3934	3957	3980
27	3563	3584	3605	3626	3648	3669	3691	3712	3734	3756
26	3359	3379	3399	3419	3440	3460	3480	3501	3522	3542
25	3166	3185	3204	3223	3242	3261	3281	3300	3320	3340
24	2982	3000	3018	3036	3055	3073	3091	3110	3128	3147
23	2808	2825	2842	2859	2876	2894	2911	2929	2947	2964
22	2642	2659	2675	2691	2708	2724	2741	2757	2774	2791
21	2486	2501	2516	2532	2547	2563	2579	2594	2610	2626
20	2337	2351	2366	2381	2395	2410	2425	2440	2455	2470
19	2196	2210	2224	2238	2252	2266	2280	2294	2308	2323
18	2063	2076	2089	2102	2115	2129	2142	2155	2169	2182

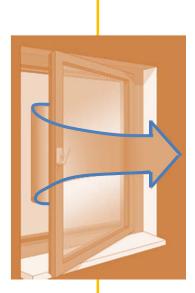
Achtung: die Werte haben sich im Vergleich zu alten Normenwerte leicht verändert, z.B. $p_s(20^{\circ}\text{C})$: früher 2340 Pa, heute 2337 Pa

Wasserdampfsättigungsdruck p_s nach DIN 4108-3 NEU 2018

Tempera- tur in	Sättigungsdampfdruck, in Pa, für Temperaturschritte in Zehntel °C									
°C	,0	,1	,2	,3	.4	,5	,6	,7	,8	.9
17	1937	1949	1961	1974	1986	1999	2012	2024	2037	2050
16	1817	1829	1841	1852	1864	1876	1888	1900	1912	1924
15	1704	1715	1726	1738	1749	1760	1771	1783	1794	1806
14	1598	1608	1619	1629	1640	1650	1661	1672	1683	1693
13	1497	1507	1517	1527	1537	1547	1557	1567	1577	1587
12	1402	1411	1420	1430	1439	1449	1458	1468	1477	1487
11	1312	1321	1330	1338	1347	1356	1365	1374	1383	1393
10	1227	1236	1244	1252	1261	1269	1278	1286	1295	1303
9	1147	1155	1163	1171	1179	1187	1195	1203	1211	1219
8	1072	1080	1087	1094	1102	1109	1117	1124	1132	1140
7	1001	1008	1015	1022	1029	1036	1043	1050	1058	1065
6	935	941	948	954	961	967	974	981	988	994
5	872	878	884	890	897	903	909	915	922	928
4	813	819	824	830	836	842	848	854	860	866

Wasserdampfsättigungsdruck p_s nach DIN 4108-3 NEU 2018

Tempera- tur in	Sättigungsdampfdruck, in Pa, für Temperaturschritte in Zehntel °C									
°C	,0	,1	,2	,3	.4	5	,6	7	,8	,9
3	757	763	768	774	779	785	790	796	801	807
2	705	710	715	721	726	731	736	741	747	752
1	656	661	666	671	676	680	685	690	695	700
0	611	615	619	624	629	633	638	642	647	652
0	611	605	601	596	591	586	581	576	571	567
-1	562	557	553	548	544	539	535	530	526	521
-2	517	513	509	504	500	496	492	488	484	479
-3	475	471	468	464	460	456	452	448	444	441
-4	437	433	430	426	422	419	415	412	408	405
-5	401	398	394	391	388	384	381	378	375	371
-6	368	365	362	359	356	353	350	347	344	341
-7	338	335	332	329	326	323	320	318	315	312
-8	309	307	304	301	299	296	294	291	288	286
-9	283	281	278	276	274	271	269	266	264	262
-10	259	257	255	252	250	248	246	244	241	239
ANMERKUNG Berechnung nach Formel und Tabellenwerte können geringfügig voneinander abweichen.										


Rechenbeispiele

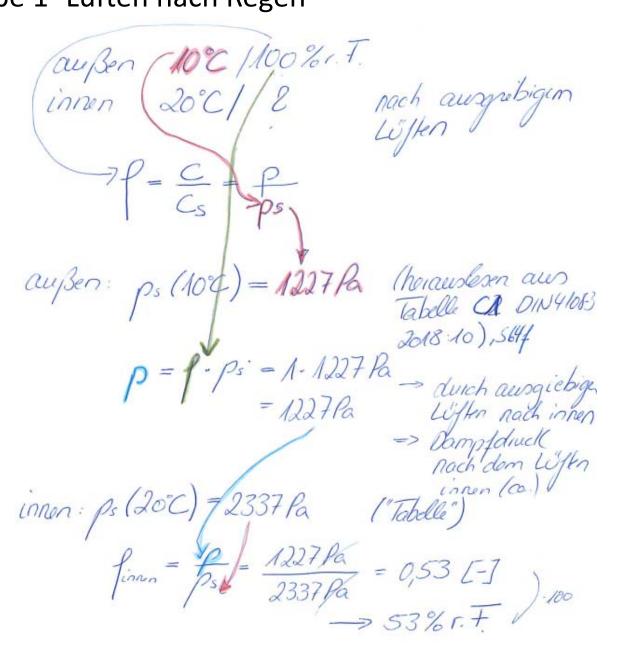
Aufgabe 1- Lüften nach Regen

gegeben

Außenlufttemperatur: 10°C

Rel. Luftfeuchte außen: 100% r.F.

gegeben:


Innenlufttemperatur: 20 °C

gesucht:

rel. Luftfeuchte innen nach ausgiebigem Lüften

Rechenbeispiele

Aufgabe 1- Lüften nach Regen

Relative Feuchte und Taupunktunterschreitung

$$\varphi = \frac{c}{c_s} = \frac{p_D}{p_s}$$

Die relative Luftfeuchte ϕ nimmt Werte zwischen 0 und 1 bzw. 0 % r.F. und 100 % r.F. an

→ Tauwasserausfall sobald φ ≥ 100 % r.F., d.h. : absolute Feuchte $c > c_s$ bzw. Wasserdampfpartialdruck $p_p > p_s$

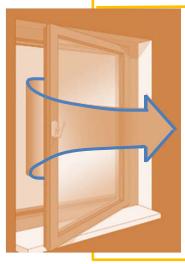
Wasserdampfpartialdruck p_D

Zusammenhang zwischen dem Wasserdampfpartialdruck p in der Luft und der Konzentration von Wasserdampf in der Luft c [g/m³]:

$$c = \frac{p}{R_D \cdot T}$$

 R_D ...Gaskonstante für Wasserdampf (= 461,5 [J/(kg·K)])

T Thermodynamische Temperatur (=273,15+ 3) [K]


Rechenbeispiel 2

Aufgabe 2- Lüften Kellergeschoss

gegeben

Außenlufttemperatur: 25°C

Rel. Luftfeuchte außen: 60% r.F.

gegeben:

Wandtemperatur Keller: 15 °C Raumtemperatur Keller: 20 °C

gesucht:

- -rel. Luftfeuchte innen nach ausgiebigem Lüften
- anfallende Tauwassermenge
- erforderliche Wandtemperatur

Keller

Welche relative Feuchte ist im Raum sowie an der Außenwand nach ausgiebigem Lüften zu erwarten ?

geg. außen
$$25\%/60\% IT$$
- $ps(25\%) = 3166 Pa$

innen $15\%/2$ Wand $ps(15\%) = 1704 Pa$
 $20\%/2$ Raum $ps(20\%) = 2337 Pa$
 $15\%/2$ Raum $ps(20\%) = 2337 Pa$

außen: $p = 2$ $ps(25\%) = 3166 Pa$ ("Tabelle")

> $p = 1.ps = 0.6.3166 Pa = 1900 Pa$ ("Inid rangelight")

innen: Raum $ps(20\%) = 2337 Pa$ ("Tabelle")

 $100\%/2 = 1900 Pa$ $100\%/2 = 1900 Pa$ ("Tabelle")

 $100\%/2 = 1900 Pa$ $100\%/2 = 1900 Pa$ ("Tabelle")

innen: Raum
$$p_s(20^\circ c) = 2337 \, Pa$$
 (Tabelle")

Wand $p_s(15^\circ c) = 1704 \, Pa$ (Tabelle")

 $f_{Raum} = \frac{19c0 \, Pa}{2332 \, Pa} = 0.81 \, E$
 $\Rightarrow 81 \, \% \, r. \, F$
 $\Rightarrow 100\% \, r. \, F + Tauwaneausfall$

Welche Tauwassermenge fällt an der Wand aus?

Auf welchen Wert muss die Wandtemperatur erhöht werden, damit bei den gegebenen klimatischen Außenklimaverhältnissen a) kein Tauwasser ausfällt b) keine Schimmelpilze wachsen?

Welche Menge an Wasserdampfmolekülen müsste durch eine Entfeuchtungsanlage aufgenommen werden, damit kein Schimmel an der Wand entsteht?

geg aus corangegangine Frage

con außen nach innen
$$C = 13.8 \frac{9}{\text{m}^3}$$

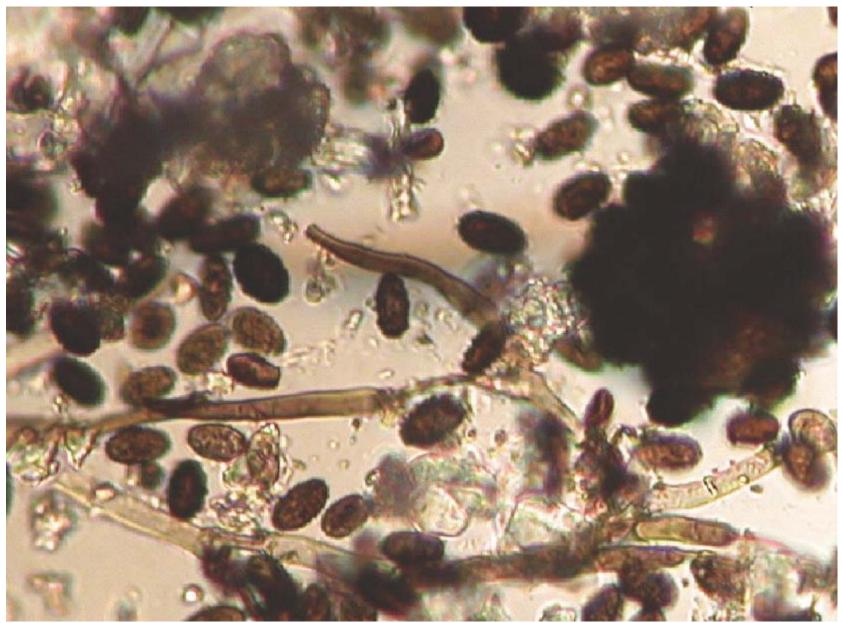
max innen $C = 13.8 \frac{9}{\text{m}^3}$ (= 100% i.f.)

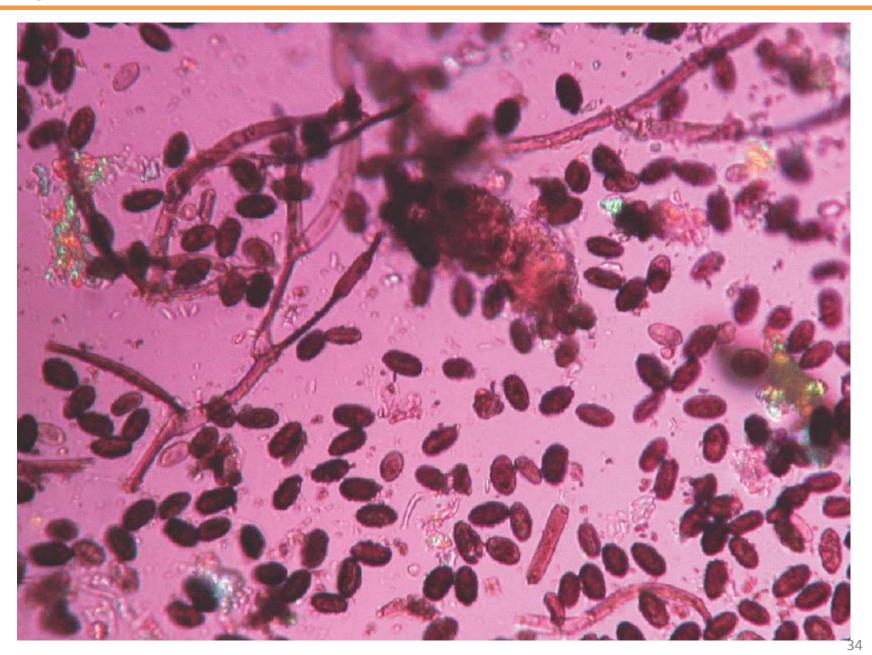
 $f = f_0 = \frac{C}{C_0} \rightarrow C(80\% \text{r.f.}) = C_0 = 0.02 \frac{9}{\text{m}^3}$

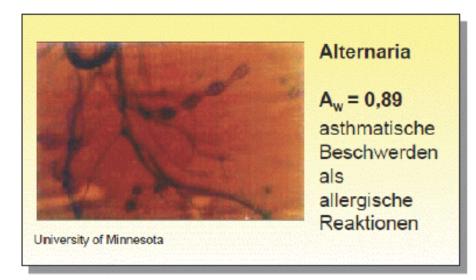
bei $10.2 \frac{9}{\text{m}^3}$ Wassedampflonzenhich on an ole Wand enlishten Schimmelplze, de Cofoit einicht sind

 $AC = 13.8 \frac{9}{\text{m}^3} - 10.2 \frac{9}{\text{m}^3} = 3.6 \frac{9}{\text{m}^3}$

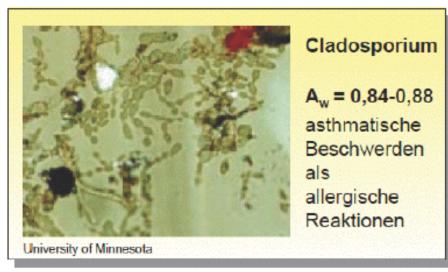
... wa ist ... von $80\% \text{ i.f.}$ which is the sum of the sum of

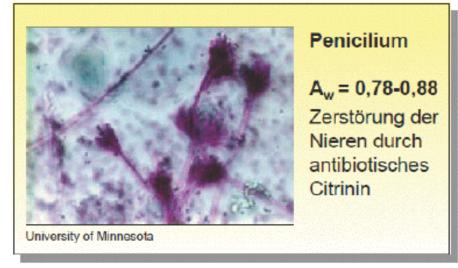

Welche relative Feuchte muss im Raum eingestellt werden, damit kein Schimmel an der Wand entsteht?


$$C_{11} + 80\% = 10,2 \frac{9}{100} \int_{Rain}^{Rain} \frac{G_{11} + g_{12}}{G_{12} + g_{12}} dg_{12} dg$$

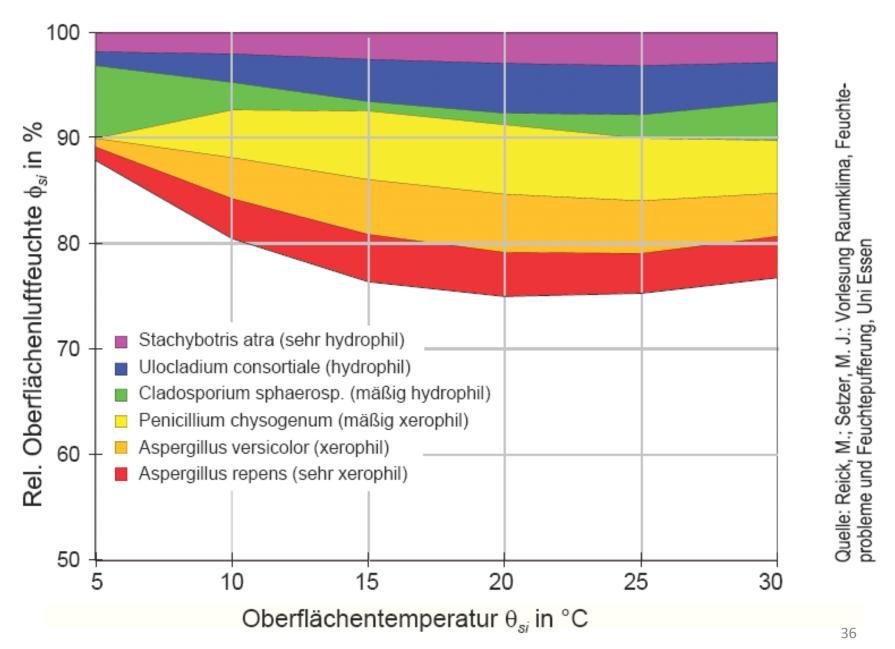




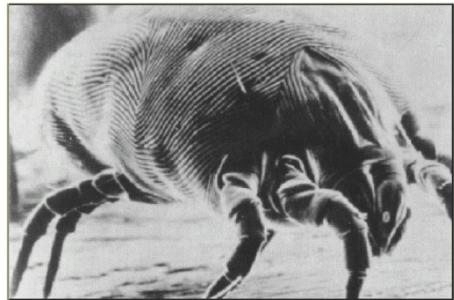




Typische Schimmelpilze

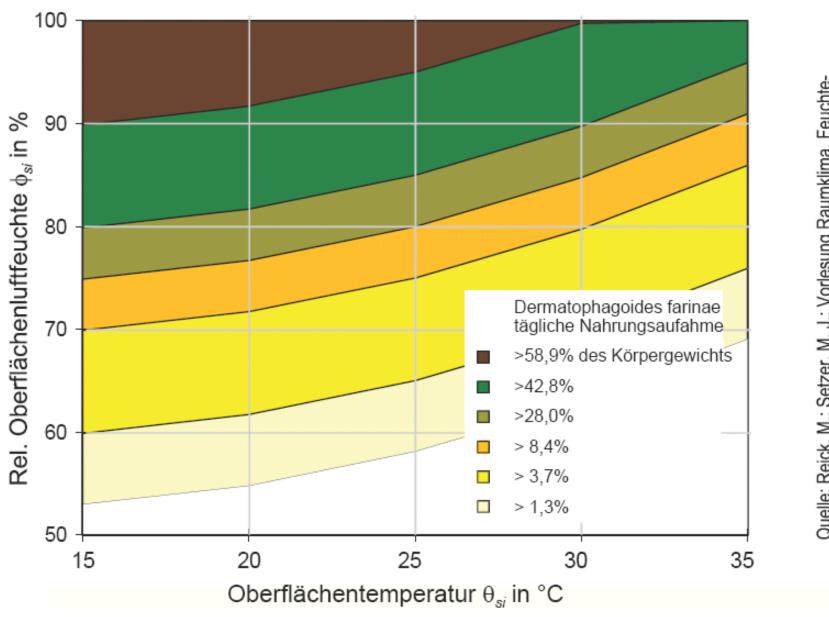


Quelle: Reick, M.; Setzer, M. J.: Vorlesung Raumklima, Feuchteprobleme und Feuchtepufferung, Universität Essen


Optimales Klima für Schimmelpilze

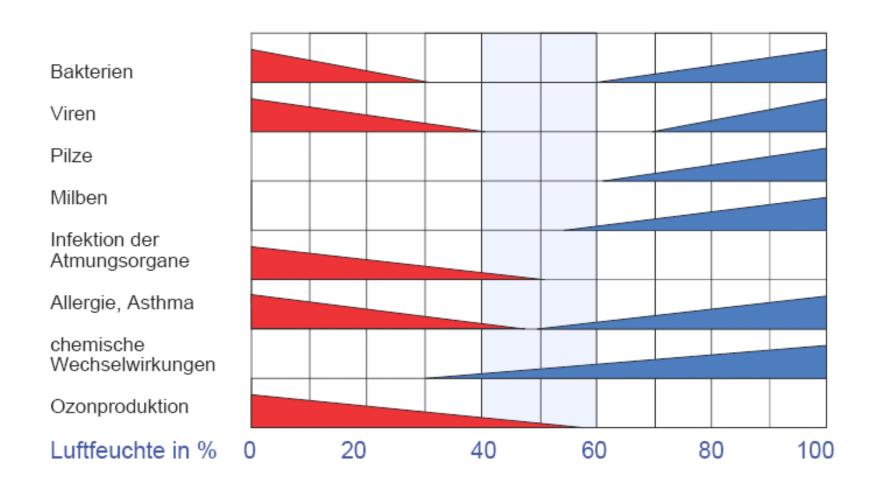
Hausstaubmilben

Hausstaubmilben



Hausstaubmilbe (Dermatophagoides pteron.) zu deutsch: die Hautfresserartigen, ca. 0,4mm lang, 0,3mm breit, Nahrung: fetthaltige Hautschuppen, leben in Symbiose mit xerophilen Schimmelpilzen, bis 1000 Milben je 1g Hausstaub, Milbenkot (10..50mm) enthält Allergene, Kot zerfällt zu Staub (< 5mm) und verteilt sich in der Raumluft → Hausstaubmilbenallergie

Quelle: Reick, M.; Setzer, M. J.: Vorlesung Raumklima, Feuchteprobleme und Feuchtepufferung, Universität Essen

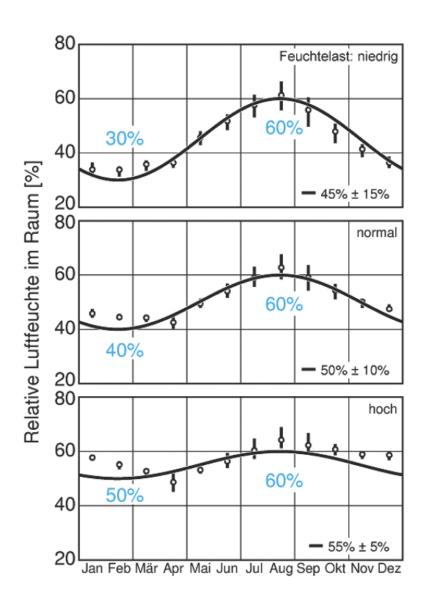

Optimales Klima für Hausstaubmilben

Quelle: Reick, M.; Setzer, M. J.: Vorlesung Raumklima, Feuchte-probleme und Feuchtepufferung, Uni Essen

39

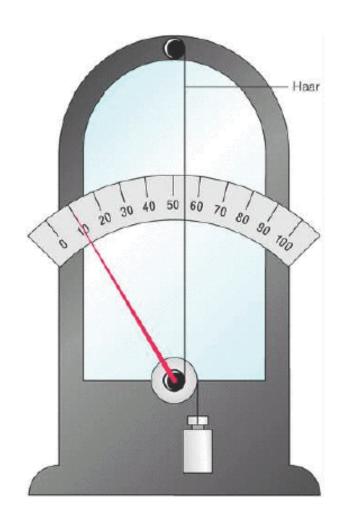
Optimale Raumluftfeuchte für die menschliche Gesundheit



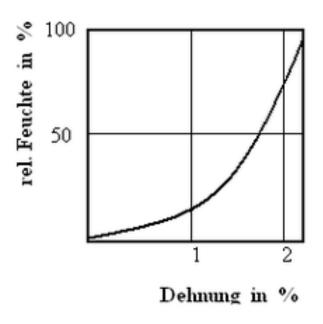

Quelle: Scofield, C.M.; Sterling, E.M.: Dry Climate Evaporative Cooling With Refrigeration Backup. ASHRAE Journal, June, 1992.

Innenraumklima

Messungen in Wohnräumen



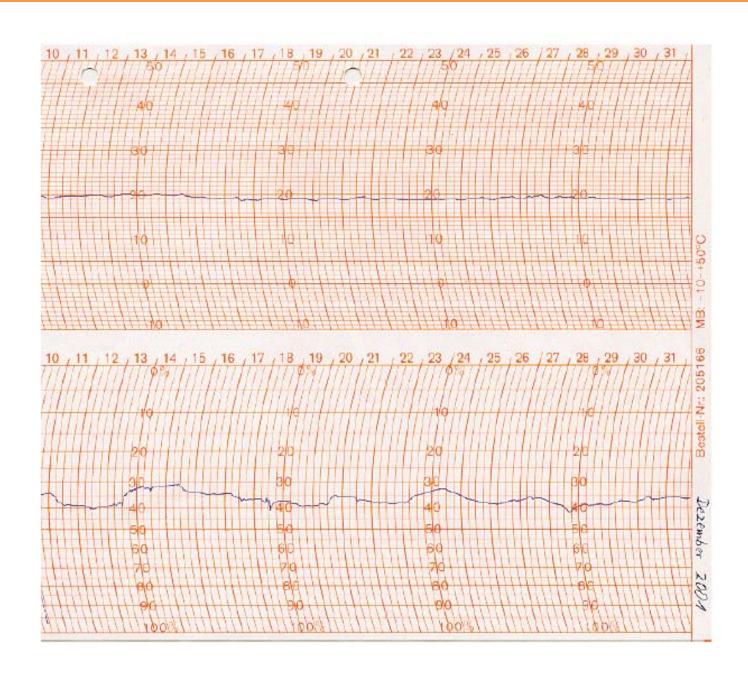
[Künzel: Raumluftfeuchte in Wohngebäuden Randbedingung für die Feuchteschutzbeurteilung]


[Prof. Schulz]

Messung der Raumluftfeuchten

Haarhygrometer (Schema)

Delmung des Haares

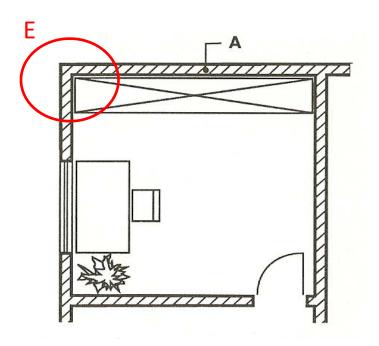


Quelle: www.wissen.de

Messung der Raumluftfeuchten und Temperaturen

Messung der Raumluftfeuchten und Temperaturen

Messung von Luftfeuchten und Temperaturen



Messung von Luftfeuchten und Temperaturen

Verständnisfragen

Im Eckbereich E der Außenwand des im nachstehenden Bild abgebildeten Raumes tritt Tauwasser auf, welches bereits zu einer Schimmelpilzbildung geführt hat.

Welche der folgenden Aussagen sind im Bezug zu diesem Schadenfall richtig bzw. falsch?

(Alle Aussagen werden bei Betrachtung von Winter-temperaturen gemacht.)

Verständnisfragen - richtig oder falsch?

Durch den Schrank wird die *Oberflächentemperatur* der Innenseite der Außenwand herabgesetzt.

Dies führt zu einer Reduzierung des Sättigungsdampfdrucks p_s an der Innenoberfläche und somit zur Erhöhung der relativen Feuchte.

Durch den Schrank wird die *Oberflächentemperatur* der Innenseite der Außenwand erhöht. Dies führt zu einer *Erhöhung des Partialdampfdrucks* p_D an der Innenoberfläche und somit zur Erhöhung der relativen Feuchte.

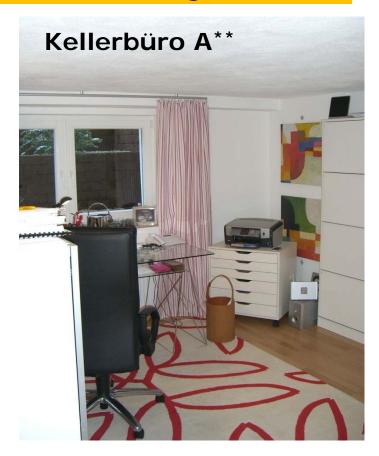
Die dargestellte Ecke ist von allen dargestellten Wandbereichen im Hinblick auf Tauwasseranfall am kritischsten zu betrachten, da hier eine geometrische Wärmebrücke vorhanden ist, die in einer niedrigeren Innenoberflächentemperatur resultiert.

Durch das Aufbringen einer Innendämmung kann zwar die Oberflächentemperatur an der Innenseite erhöht, die Temperatur an der Grenzschicht zwischen "alter" Wand und Dämmung wird jedoch reduziert, so dass hier weiterhin mit Schimmelpilz zu rechnen ist.

Durch Öffnen des Fensters kann der Partialdampfdrucks p_D im Raum reduziert werden, was wiederum die relative Feuchte und somit die Gefahr der Schimmelpilzbildung reduziert.

Die Feuchteproduktion durch Menschen, Pflanzen und Lebensgewohnheiten hat keinen Einfluss auf die Gefahr der Schimmelpilzbildung im Eckbereich dieses Raumes.

Aufgabenstellung Übung "Nutzung und Lüftung"


Nutzung

- 1 Mensch, leichte Aktivität (8 Stunden pro Tag)
- 1 kleine Zimmerpflanze 7 g/h

Volumen des Zimmers V= 30 m³

- 1. Ermitteln Sie die täglich zu erwartende Feuchtelast des Raumes infolge Nutzung in g/m³
- 2. Ermitteln Sie die relative Luftfeuchte im Raum im Sommer wie im Winter unter der Annahme, dass die Raumtemperatur konstant bei 20°C gehalten werden kann.

Der anzunehmende absolute Feuchtegehalt im Raum ergibt sich aus der Feuchtelast infolge Nutzung innerhalb von 6 h Stunden (hier wird alle 6 h, d.h. 4 mal am Tag gelüftet) und dem "Grund"feuchtegehalt infolge des Außenklimas (Sommer: c = 10 g/m³, Winter: c = 3,8 g/m³)

Aufgabenstellung Nutzung und Lüftung

Nutzung

3. Ermitteln Sie die relative <u>und</u> die absolute Feuchte im Raum nach Austausch der Raumluft mit der Außenluft durch Lüften im Sommer wie im Winter. Nehmen Sie dabei folgende Außenklimabedingungen zum Zeitpunkt des Lüftens an:

Sommer: θ =27°C, ϕ =65%r.F. Winter: θ =6°C, ϕ =87%r.F.

Gehen Sie hierbei davon aus, dass die Raumtemperatur nach dem Lüften konstant bei 20°C gehalten wird.

- 4. Welche Menge an Feuchte (in g/m³) konnte durch Lüften abtransportiert werden bzw. wurde dem Raum zusätzlich zugeführt?
- 5. Welche Menge an Tauwasser fällt <u>vor dem</u> Lüften im Winter aus, wenn die Raumtemperatur infolge eines Defekts an der Heizungsanlage um 10 °C gesenkt wird?

Aufgabenstellung Übung "Nutzung und Lüftung"

	Art	Feuchteabgabe [g/h]
Mensch	leichte Aktivität mittelschwere Arbeit schwere Arbeit	30 - 60 120 - 200 200 - 300
Bad	Wannenbad Duschen	ca. 700 ca. 2600
Küche	Koch- und Arbeitsvorgänge	600 - 1200
Pflanzen	Zimmerblumen Topfpflanzen Mittelgroßer Gummibaum Wasserpflanzen	5 - 10 7 - 15 10 - 20 6 - 8
Wäsche	4,5 kg geschleudert 4,5 kg topfnass	50 - 200 100 - 500
Freie Wasser- oberfläche	pro m²	ca. 40 [Daten aus: DBV-Megkblat

Quellen

- Vorlesung FH Rosenheim Prof. Klaus Sedlbauer, Dr. Martin Krus, Fraunhofer-Institut für Bauphysik
- Vorlesung Prof. Schulz FH Frankfurt

An dieser Stelle danke ich Dr. Andreas Holm, Dr. Martin Krus und Prof. Klaus Sedlbauer vom Fraunhofer-Institut für Bauphysik, dass sie so hilfsbereit waren, mir die Unterlagen der von ihnen entworfenen Vorlesung an der FH Rosenheim zu Lehrzwecken an der FH Frankfurt zur Verfügung zu stellen.

Genauso danke ich **Prof. Schulz**, dass er mich bei der Gestaltung der Vorlesung beraten und unterstützt hat und mir seine Unterlagen zur Verfügung gestellt hat.