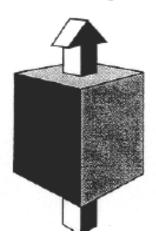
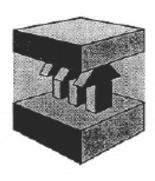
Bauphysik Wärme T02: Transportmechanismen

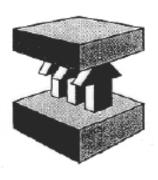

Prof. Dr.-Ing. Petra Rucker-Gramm

Vorlesungsunterlagen nur für studentische Zwecke. Eine Weitergabe oder Vervielfältigung, auch auszugsweise, ist nur nach schriftlicher Genehmigung durch die Verfasserin erlaubt.

Wärmetransportmechanismen


Welche Wärmeübertragungsphänomene gibt es?

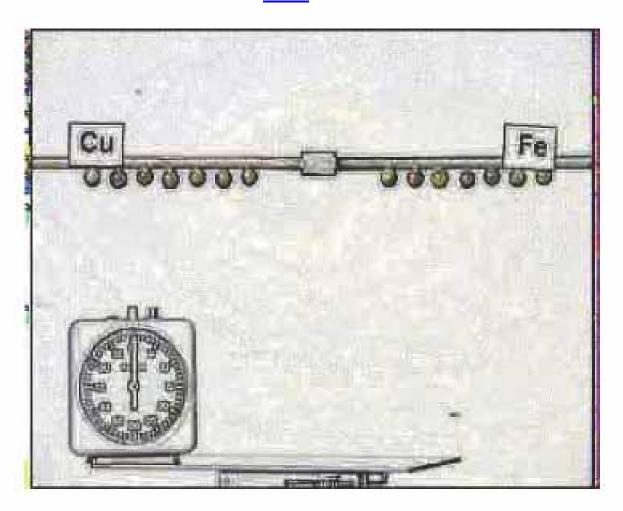
Leitung


Innerhalb eines Materials oder bei direktem Kontakt zwischen zwei Körpern

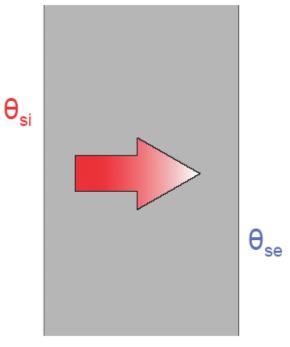
Konvektion

Wärmeenergie wird durch Strömen eines Mediums mittransportiert

Strahlung


Ausstrahlung oder Aufnahme elektromagn. Strahlung

→ Im Festkörper dominiert die Wärmeleitung, während im Gasraum Konvektion und Strahlung dominieren


Was passiert bei der Wärmeleitung?

- Ein Molekül wird durch Wärmezufuhr angeregt zu schwingen
- Je nach Art des Stoffes reagiert das benachbarte Molekül nach kürzerer oder längerer Zeit ebenfalls mit Schwingungen
- Diese Weiterleitung der Schwingung ist ein Transport von Wärmeenergie
- D.h. Wärme wird innerhalb eines Stoffes von Teilchen fortgeleitet, ohne dass die Teilchen selbst transportiert werden

<u>Film</u>

Wärmestrom durch das Bauteil infolge Wärmeleitung

 Θ_s Oberflächentemperaturen innen (i), außen (e)

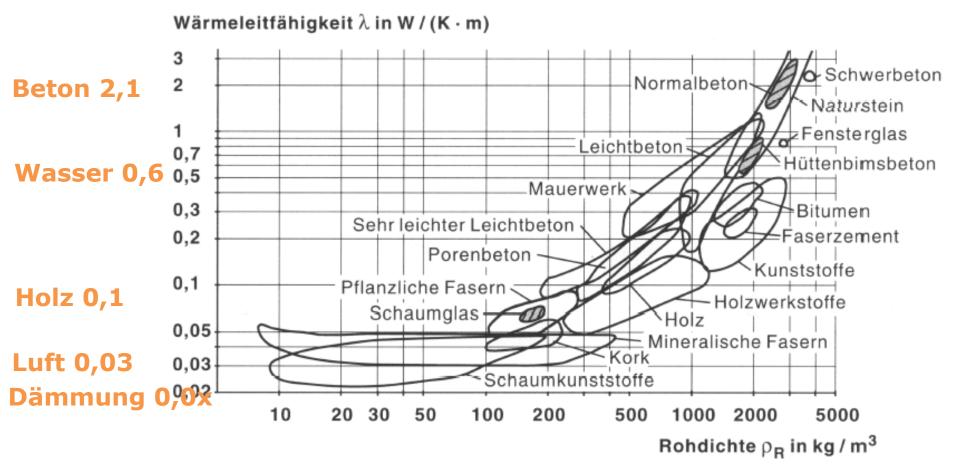
$$\dot{Q} = \frac{\Delta Q}{\Delta t} = \lambda \cdot \frac{1}{d} \cdot A \cdot (\theta_{si} - \theta_{se})$$

- $\theta_{si} > \theta_{se}$, Transport der Wärme von innen nach außen
- θ_{si} und θ_{se} konstant : stationärer Wärmetransport, d.h. es ließt je Zeiteinheit und an jedem Ort die gleiche Wärmemenge

Einflussgrößen auf den Wärmestrom

$$\dot{Q} = \frac{\Delta Q}{\Delta t} = \lambda \cdot \frac{1}{d} \cdot A \cdot (\theta_{si} - \theta_{se})$$

- Temperatur
- durchströmte Fläche
- Bauteildicke
- Wärmeleitfähigkeit

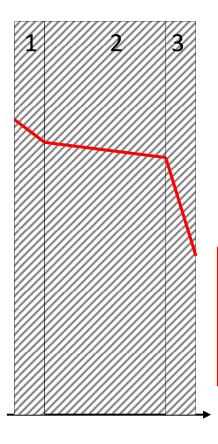

Wärmeleitfähigkeit λ

$$\dot{Q} = \frac{\Delta Q}{\Delta t} = \lambda \cdot \frac{1}{d} \cdot A \cdot (\theta_{si} - \theta_{se})$$

- Stoffeigenschaft, abhängig von Rohdichte,
 Porenform/-größe, mineralischer Struktur und Feuchte
- Wärmeenergie, die bei einer Temperaturdifferenz von 1K je Sekunde durch
 1m² einer 1m dicken Schicht fließt
 - → Einheit W/(m·K)

 $G\ddot{O}\frac{W}{(K \cdot m)}$ Wärmeleitfähigkeit λ

Alu 220

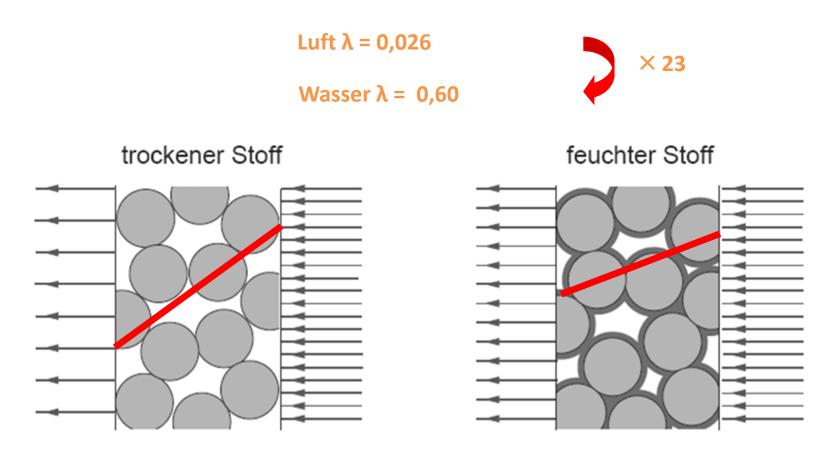


Wärmeleitfähigkeit \(\lambda \) und Temperaturgradienten

Gegeben seien die Wärmeleitfähigkeiten der Materialschichten eines Bauteils. Zeichnen Sie qualitativ einen möglichen Verlauf der Temperatur unter stationären Bedingungen.

innen

$$\lambda_2 > \lambda_1 > \lambda_3$$



außen

Temperaturprofil

Das Material mit der kleinsten Wärmeleitfähigkeit (i.a. die Dämmschicht) zeigt den größten Temperaturgradienten.

Wärmeleitfähigkeit \(\lambda \) und Feuchtegehalt

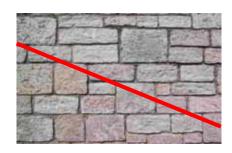
Frage: Wo ist der steilere Temperaturgradient zu erwarten?

Wärmeleitfähigkeit \(\lambda \) und Temperaturgradient - Wie war das?

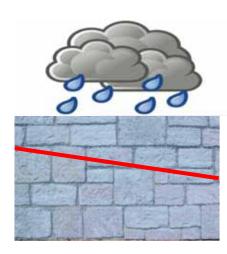
Holzwand

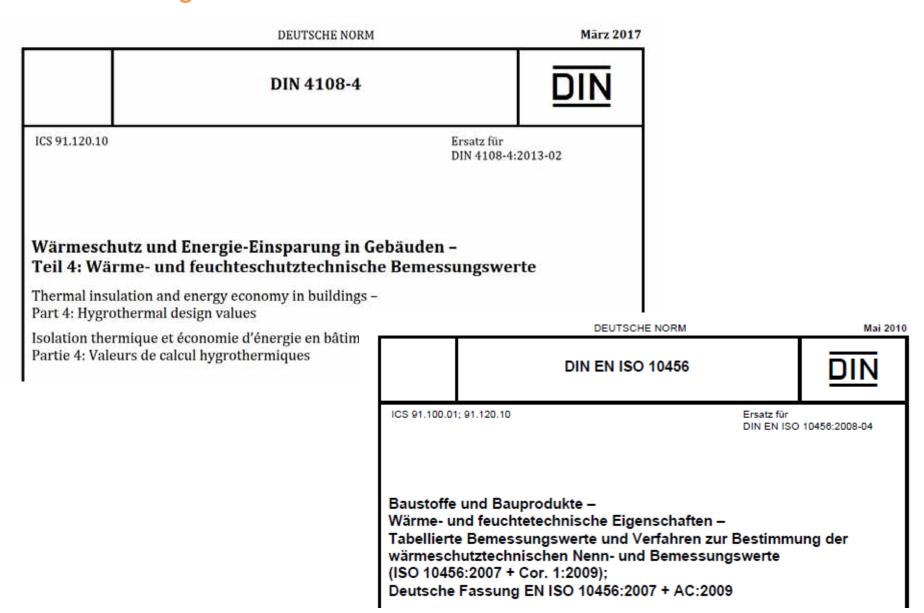
 λ ca. 0,1

Betonwand



 λ ca. 2,1


Luftschicht

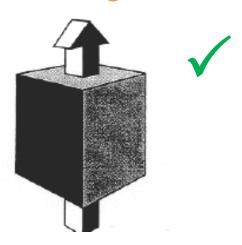

 λ ca. 0,03

Wärmeleitfähigkeit λ – Materialkennwerte nach Norm

Wärmeleitfähigkeit λ – Materialkennwerte nach Norm

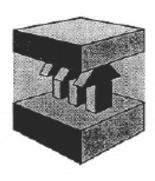
DIN EN ISO 10456:2010-05 EN ISO 10456:2007 + AC:2009

Tabelle 3 — Wärmeschutztechnische Bemessungswerte für Baustoffe, die gewöhnlich bei Gebäuden zur Anwendung kommen

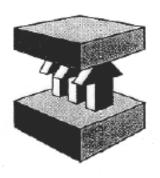

Stoffgruppe oder Anwendung		Rohdichte	Bemessungs- wärmeleit- fähigkeit	Spezifische Wärme- speicher- kapazität	diffusio	rdampf- nswider- Iszahl			
		ρ kg/m³	ار W/(m⋅K)	c _p J/(kg⋅K)	trocken	feucht			
Asphalt		2 100	0,70	1 000	50 000	50 000	1		
Bitumen	als Stoff	1 050	0,17	1 000	50 000	50 000	İ		
	Membran/Bahn	1 100	0,23	1 000	50 000	50 000	Tabelle 1	1 (fortgesetzt)	
Betona							t ——	<u>, , , , , , , , , , , , , , , , , , , </u>	Bemessung
	mittlere Rohdichte	1,900	1,15	1 000	100	60		Rohdichte ^{a,b}	Wärmeleitf
		2 000	1,35	1.000	100	60		ρ	λ
		2 200	1.65	1 000	120	70	l	kg/m ³	W/(m
	hohe Rohdichte	2 400	2.00	1 000	130	80			
									Siehe DIN EN
	armiert (mit 1 % Stahl)	2 300	2,3	1 000	130	80	nit	800	0
	armiert (mit 2 % Stahl)	2 400	2,5	1 000	130	80	EN 206-1 /erwendung	900	0
Fußbode	nbeläge						je nach	1 000	0
	Gummi	1200	0.17	1 400	10 000	10 000	zd	1 200	0
							1	1 300	0
	Kunststoff	1700	0,25	1 400	10 000	10 000	1	1 400 1 500	0
	Unterlagen, poröser Gummi oder	270	0,10	1 400	10 000	10 000	1	1 600	1
	Kunststoff						1	1 800	1
	Filzunterlage	120	0.05	1 300	20	15		2 000	1
	•	200	0.00	4 200	20	15	n nach	350	0
	Wollunterlage	200	0,06	1 300	20		l	400 450	0
	Korkunterlage	< 200	0,05	1 500	20	10	l	500	0
	Korkfliesen	> 400	0,065	1 500	40	20	l	550	0
	Teppich/Teppichböden	200	0.06	1 300	5	5	l	600	0
							l	650	0
ĺ	Linoleum	1 200	0,17	1 400	1 000	800	I		

	Rohdichte ^{a,b}	Bemessungswert der Wärmeleitfähigkeit	Richtwert der Wasserdampf -Diffusions-
	ρ kg/m ³	λ W/(m⋅K)	widerstands- zahl ^c μ
		Siehe DIN EN ISO 10456	
nit	800	0,39	
EN 206-1	900	0,44	
erwendung/	1 000	0,49	
e nach	1 100	0,55	
Zd	1 200	0,62	
	1 300	0,70	70/150
	1 400	0,79	
	1 500	0.89	
	1 600	1,0	
	1 800	1,15	
	2 000	1,35	
nach	350	0,11	
	400	0,13	
	450	0,15	
	500	0,15	
	550	0,18	
	600	0,19	5440
	650	0.21	5/10
			4.2

Wärmetransportmechanismen


Welche Wärmeübertragungsphänomene gibt es?

Leitung


Innerhalb eines Materials oder bei direktem Kontakt zwischen zwei Körpern

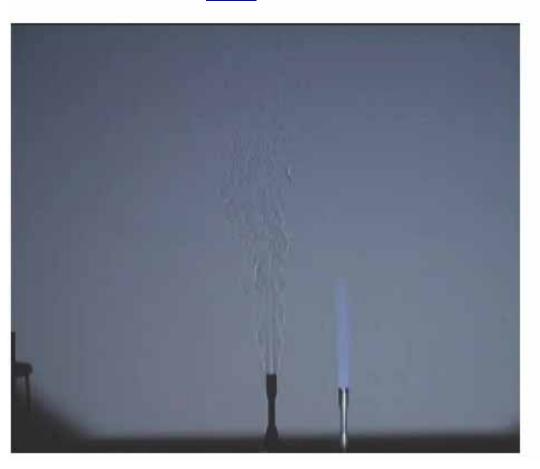
Konvektion

Wärmeenergie wird durch Strömen eines Mediums mittransportiert

Strahlung

Ausstrahlung oder Aufnahme elektromagn. Strahlung

→ Im Festkörper dominiert die Wärmeleitung, während im Gasraum Konvektion und Strahlung dominieren

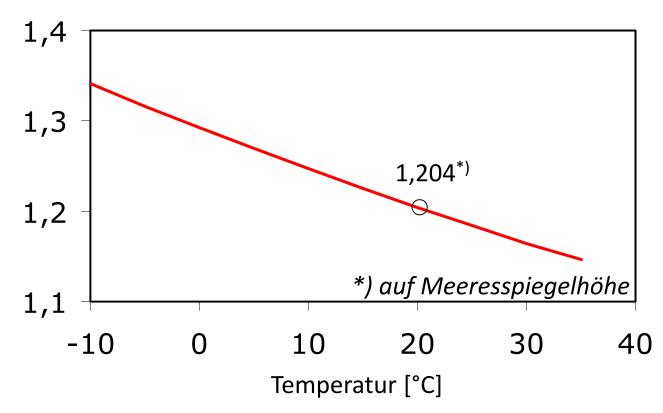

Wärmekonvektion

Wärmekonvektion = Wärmemitführung

Was passiert bei der Wärmekonvektion?

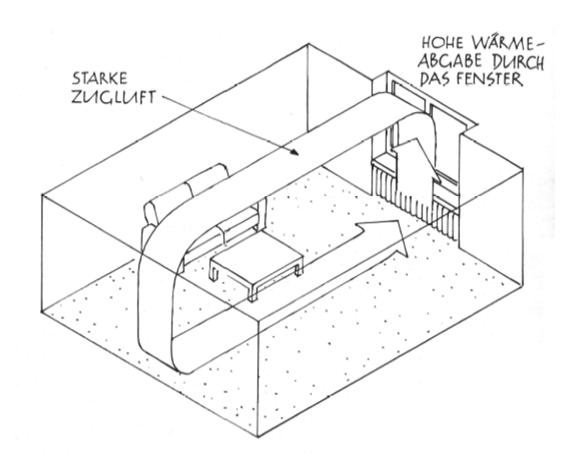
- Transport ist an die Bewegung eines gasförmigen oder flüssigen Mediums gebunden (z.B. Umgebungsluft oder Wasser)
- Durch die Bewegung des Mediums wird Wärme übertragen z.B.: durch Rühren in einer Flüssigkeit
 bei Luft in Folge von Durchzug durch die Bewegung von Menschen
- Unterscheidung in <u>freie Konvektion</u>:
 infolge von Dichteunterschieden von warmer und kalter Luft
- Und <u>erzwungene Konvektion</u>:
 infolge von äußeren Kräften (Wind) und Ventilation

<u>Film</u>

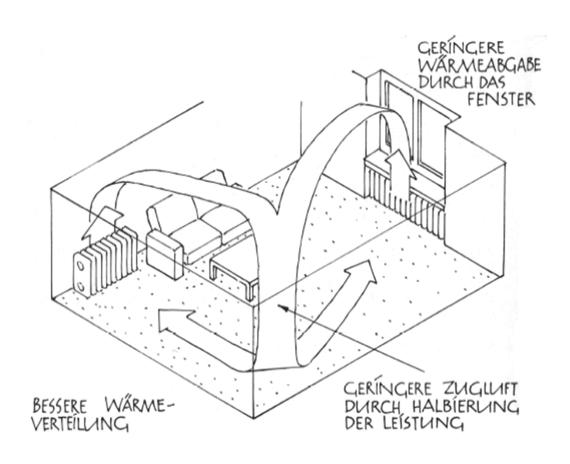

Wärmekonvektion – ein kleiner Exkurs

Luftdichte [kg/m³]

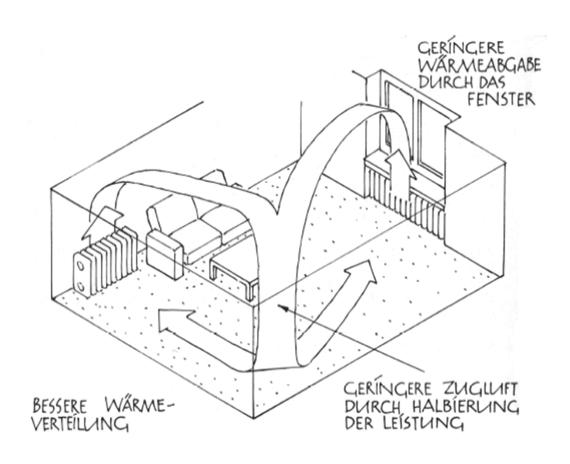
kalte Luft höhere Dichte

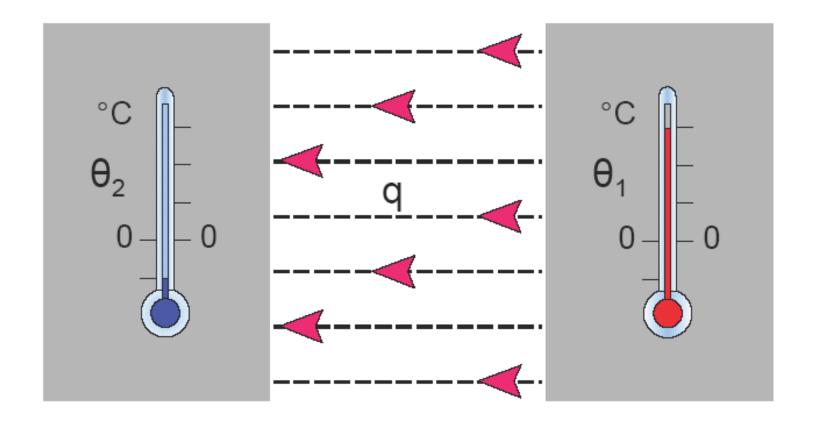

warme Luft geringere Dichte

→ freie Konvektion: bei Erwärmung steigt die Luft nach oben


warme Luft steigt nach oben kalt

Temperaturausgleich in Richtung des Temperaturgefälles


Luftbewegung bei üblicher Anordnung von Heizkörpern (Haarich)

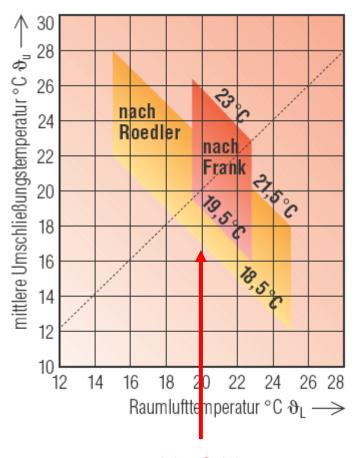


Empfehlung zur Anordnung von Heizkörpern nach Haarich

Empfehlung zur Anordnung von Heizkörpern nach Haarich

Wärmetransportmechanismen

Welche Wärmeübertragungsphänomene gibt es?

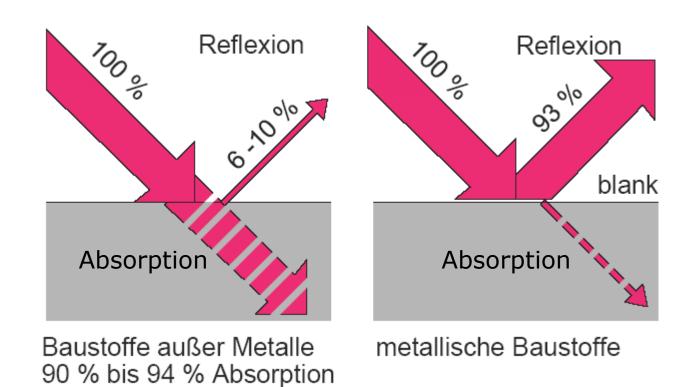

Innerhalb eines Materials oder bei direktem Kontakt zwischen zwei Körpern Wärmeenergie wird durch Strömen eines Mediums mittransportiert Ausstrahlung oder Aufnahme elektromagn. Strahlung

→ Im Festkörper dominiert die Wärmeleitung, während im Gasraum Konvektion und Strahlung dominieren

Was passiert bei der Wärmestrahlung?

- ein Objekt gibt in Abhängigkeit von seiner Temperatur und
 Oberflächenbeschaffenheit elektromagnetische Strahlung ab
- Jeder Körper gibt Temperaturstrahlung ab (Emission) und nimmt aus der Umgebung Temperaturstrahlung auf (Absorption)
- Je höher die Temperatur, umso höher die Abstrahlung
- Strahlungsbilanz:

Ein Körper, der die gleiche Temperatur hat, wie seine Umgebung, gibt genauso viel Strahlung ab, wie er empfängt, d.h. die Temperatur bleibt gleich Ist ein Körper wärmer als die Umgebung, gibt er mehr Strahlung ab als er von der Umgebung empfängt → Abkühlung


[ökologisches Bauen mit Ziegeln]

Wohlgefühl, wenn Wandtemperatur > 17°C

Grund?

Je geringer die Wandtemperatur, desto mehr Strahlung gibt der Mensch an diese ab → je geringer die Wandtemperatur, desto unangenehmer

 Wärmestrahlung kann durch strahlungsundurchlässige Stoffe unterbrochen werden (Baustoffe, Ausnahme z.B. Glas)

Spiegel?

Einfluss der Oberfläche auf das Absorptionsverhalten

Oberfläche

verputzte Oberflächen

heller Anstrich	40
gedeckter Anstrich	60
dunkler Anstrich	80

Dächer

Ziegelrot	50
dunkle Oberfläche	80
Metall	20
Bitumenpappe	40
•	

Mauerwerk

Klinkermauerwerk	80
helles Sichtmauerwerk	50

Anteil Absorption [%]

:

Strahlungswärme

Absorptionsgrade für langwellige und kurzwellige Strahlung unterscheiden sich:

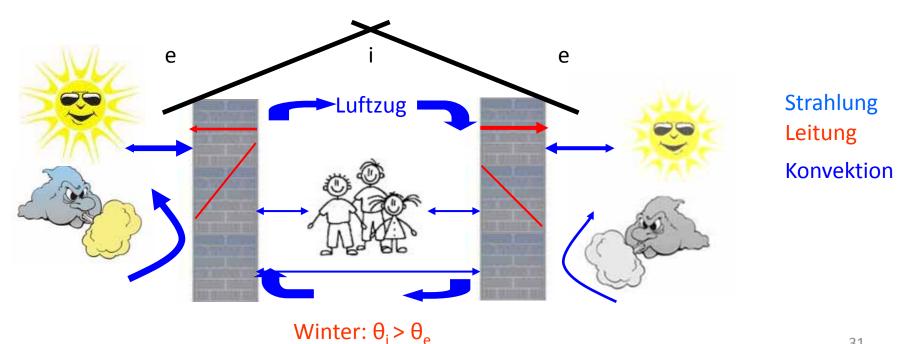
kurzwellige Strahlung (Sonne)

	α
Dachpappe	0,93
Ölfarbenanstrich, dunkel	0,87
Putz, grau	0,65
Putz, weiß	0,36
Beton	0,55
Ziegelstein, rot	0,55
Putz, weiß	0,36
Metalle, poliert	≈ 0 ,2 5
Aluminium anodisiert, eloxiert	0,20-0,40
Aluminium poliert	0,10-0,40
Fensterglas	0,04-0,40
(je nach Durchlässigkeit)	

- → Für den Absorptionsgrad ist die Farbe (Helligkeit) entscheidend
- → Bei kurzwelliger Strahlung treten geringere Absorptionsgrade als bei langwelliger Strahlung auf

Strahlungswärme

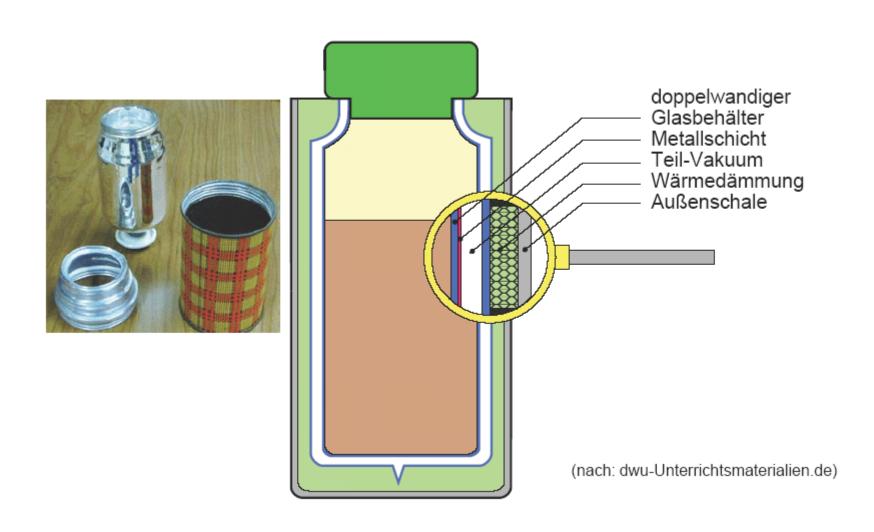
Absorptionsgrade für langwellige und kurzwellige Strahlung unterscheiden sich:


langwellige Strahlung (Körper zwischen 0 und 100°C)

Dachpappe Ölfarbenanstrich, schwarz, glänzend Ölfarbenanstrich, weiß Putz, Beton, Mörtel Ziegelstein, rot Fensterglas Aluminium anodisiert, eloxiert	α 0,93 0,88 0,89 0,93 0,93 0,90	alle nichtmetallische Baustoffe absorbieren (und emittieren) beträchtlich, nahezu in der gleichen Größenordnung
Aluminium poliert Silber, poliert	≈ 0,30 0,03	polierte metallische Oberflächen absorbieren (und emmittieren) sehr wenig

[→] Für den Absorptionsgrad ist die Oberflächenstruktur, nicht die Helligkeit entscheidend

Zusammenfassung Wärmetransportmechanismen


- drei Arten des Wärmetransport mit unterschiedlichen Gesetzmäßigkeiten
- Wärmestrom zwischen zwei benachbarten Körpern bis Temperaturausgleich erreicht ist
- Richtung des Wärmestroms stets in Richtung des Temperaturgefälles

31

Zusammenfassung Wärmetransportmechanismen

Ein Beispiel: Thermosflasche, Schutz gegen alle drei Arten des Wärmetransports

Grundkennwerte

Wärmekapazität "c"

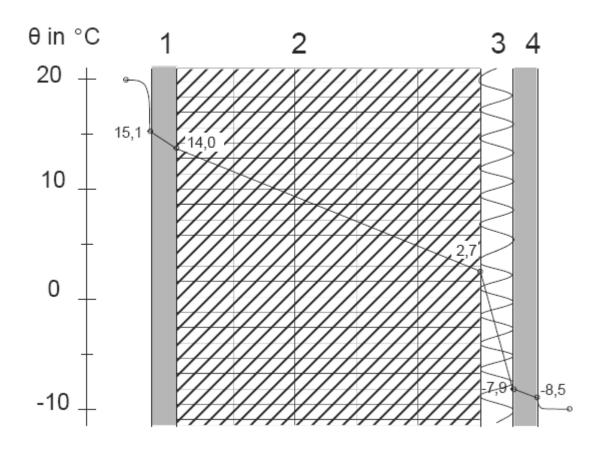
Wärmemenge, die einem Kilo des trockenen Baustoffs zugeführt werden muss, um diesen um ein Kelvin zu erwärmen

oder

Wärmemenge, die ein Kilo des trockenen Baustoffs abgibt, wenn er um ein Kelvin abkühlt

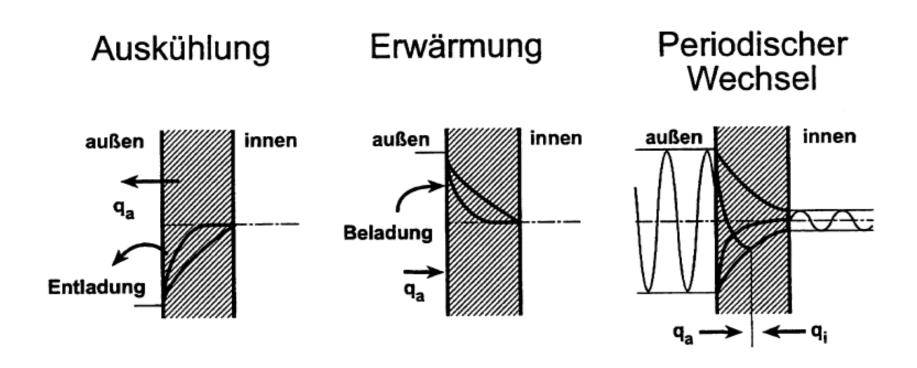
Wärmespeicherung und -transport

Wärmespeicherung


- Wärmespeicherfähigkeit c des trockenen Baustoffs
- Wärmespeicherfähigkeit c des enthaltenen Wassers

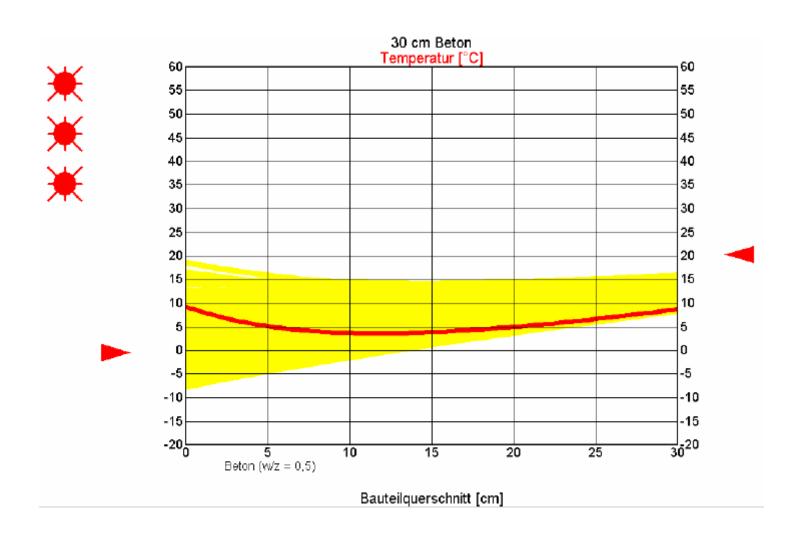
Bsp. Wasser: 4,18 kJ Energie erforderlich, um 1 kg Wasser um 1K zu erwärmen

⇒ Wasser kann viel Energie aufnehmen, ohne dass sich die Temperatur wesentlich erhöht, beim Abkühlen wird viel Energie frei


	Rohdichte ρ	spez. Wärm	ekapazität <i>c</i>
Material	[kg/m³]	[J/kgK]	[KJ/m³K]
Beton	2100	850	1785
Mineralfaser	30	840	25,2
Holz	400	1900	760
Holzfaserdämmstoff	150 – 270	1700 – 2100	
Luft	1	1005	1,005
Wasser	1000	4183	4183
Zelluloseflocken	25 – 70	2100	52,5-147

Grafische Darstellung des eines Temperaturverlaufs unter stationären Bedingungen:

Hinweis Realität: instationäre Temperaturverhältnisse


Das instationäre Temperaturverhalten wird beeinflusst durch die Wärmeleitfähigkeit und die Wärmespeicherkapazität c

Hinweis Realität: instationäre Temperaturverhältnisse

Instationäre Temperaturverhältnisse

(durch zeitlich veränderliche Umgebungsbedingungen, z.B. Sonne, Heizung)

Quellen

- Vorlesung FH Rosenheim Prof. Klaus Sedlbauer, Dr. Martin Krus, Fraunhofer-Institut für Bauphysik

2008: An dieser Stelle **danke** ich **Dr. Martin Krus** und **Prof. Klaus Sedlbauer** vom Fraunhofer-Institut für Bauphysik, dass sie so hilfsbereit waren, mir die Unterlagen, der von ihnen entworfenen Vorlesung an der FH Rosenheim zu Lehrzwecken an der FH Frankfurt zur Verfügung zu stellen.

Genauso danke ich **Prof. Schulz**, dass er mich bei der Gestaltung der Vorlesung beraten und unterstützt hat und mir seine Unterlagen zur Verfügung gestellt hat.