
	1			00 -	00=										
Vorlesung	g/Ub	ung a	am 03	.02.2	2025										

Stahlbeton-Decken (einachsig spannende Decke)

11.3 Dach- und Deckenplatten (Stahlbeton-Vollplatten oder Elementdecken)

Systemskizze

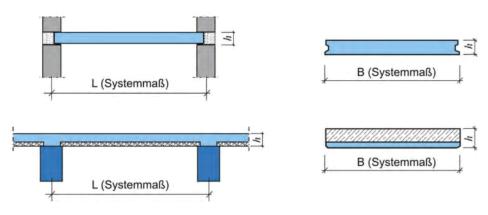
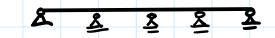


Tabelle 16: Deckendicke h [mm] in Abhängigkeit von den Einwirkungen gk,i + gk,i für Durchlaufsysteme¹⁾

Systemmaß L	Deckendicke h [mm] bei Einwirkungen $g_{\mathbf{k},\mathbf{i}}$ + $q_{\mathbf{k},\mathbf{i}}$ [kN/m²] für Durchlaufsysteme ¹⁾													
[m]	1,0	1,5	2,0	2,5	3,0	3,5	4,0	4,5	5,0	7,5	10,0	15,0	20,0	25,0
3,0			1	20				12	20		14	4 0	160	
4,0	140							14	40		10	60	180	
5,0 ²⁾	180										20	00	220	
6,02)	220									2	240			
7,52)	240						260				28	30	300	

1) Bei einfeldrigen Platten ist die Deckendicke h um ca. 15% zu erhöhen.


h = 200 mm

 Bei aufstehenden Trennwänden können zusätzliche Maßnahmen erforderlich sein (z. B. risssichere Trennwände, größere Deckendicke)

<u>Beispiel</u>

Bei einfeldrigen Platten

Belag und Ausbaulasten $g_{k,2} = 1,50 \text{ kN/m}^2$ Nutzlasten $q_k = 2,00 \text{ kN/m}^2$ Lasten $g_{k,i} + g_k = 3,50 \text{ kN/m}^2$ Systemmaß L = 5,00 mabgelesen h = 180 mm

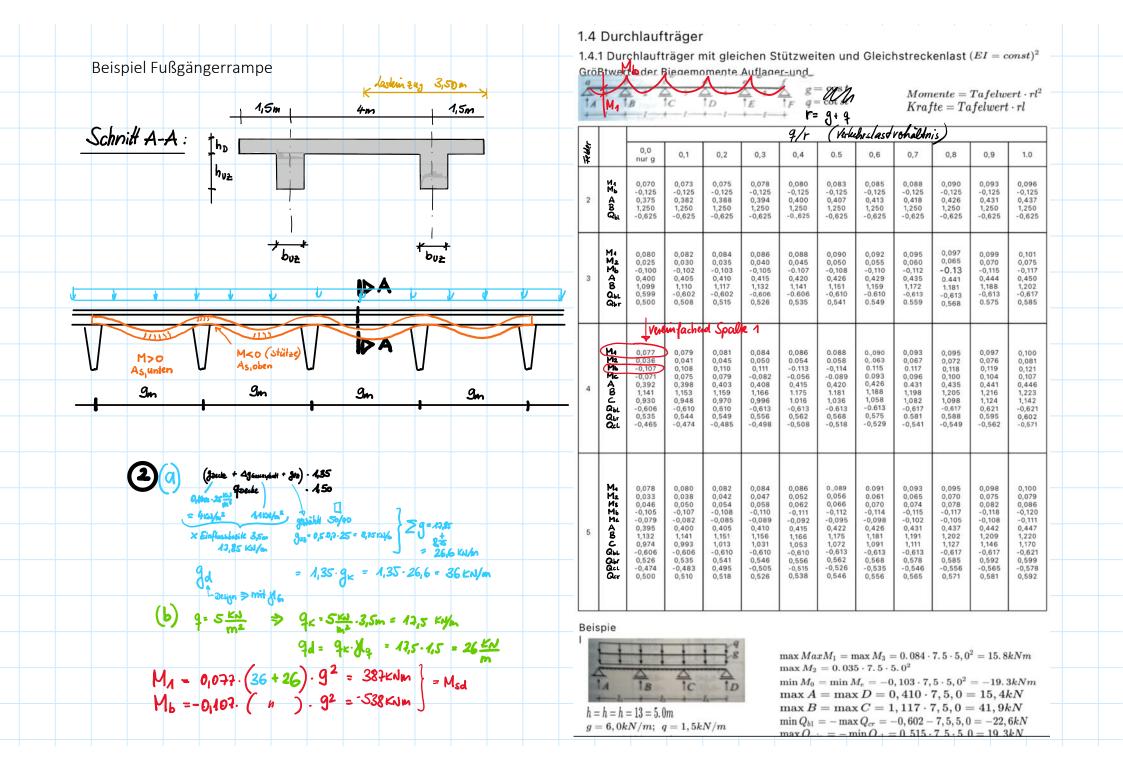
© https://www.fdb-fertigteilbau.de/

Beispiel Fußgängerrampe

4m 1,5m 1,5m Schnill A-A: huz Rampenplatte IDA DA 9m 9m 9m 9m

Bemessung der Rampenplatte als Einfeldträger zwischen den beiden Unterzügen Ausbaulast gk,1: 5cm Gussasphalt (Dichte 2200 kg/m³)

Verkehrslast $qk,1 = 5 kN/m^2$


$$g_{K_{1}1} = 0.05 \, \text{m} \cdot 22 \, \frac{\text{KJ}}{\text{m}^{3}} = 1.1 \, \frac{\text{KJ}}{\text{m}^{2}}$$

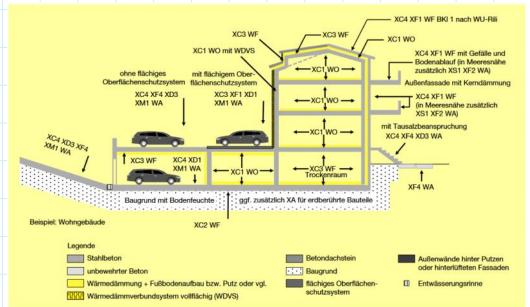
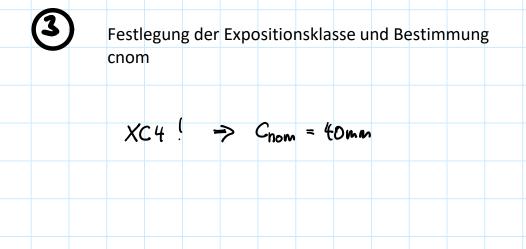
$$g_{K_{1}} = 5.0 \, \frac{\text{KJ}}{\text{m}^{2}}$$

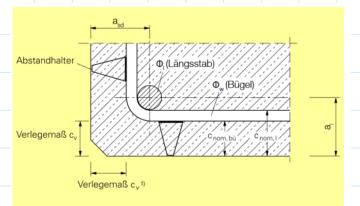
1) Bei einfeldrigen Platten ist die Deckendicke hum da. 15% zu erhöhen.
2) Bei aufstehenden trennwänden können zusätzliche Malsnahmen erford.

Systemmaß L	Deckendicke h [mm] bei Einwirkungen $g_{\mathbf{k},\mathbf{i}}$ + $q_{\mathbf{k},\mathbf{i}}$ [kN/m²] für Durchlaufsysteme ¹⁾													
[m]	1,0	1,5	2,0	2,5	3,0	3,5	4,0	4,5	5,0	7,5	10,0	15,0	20,0	25,0
3,0			1	20				1:	20	140		160		
4,0		140						140			160		180	
5,0 ²⁾	180								/	140	200		220	
6,02)	220 240													
7,52)	240							2	60		28	30	300	

Trennwänden können zusätzliche Maßnahmen erforderlich sein (z.B. risssichere Trennwände, größere Decken-

Beispiel Fußgängerrampe

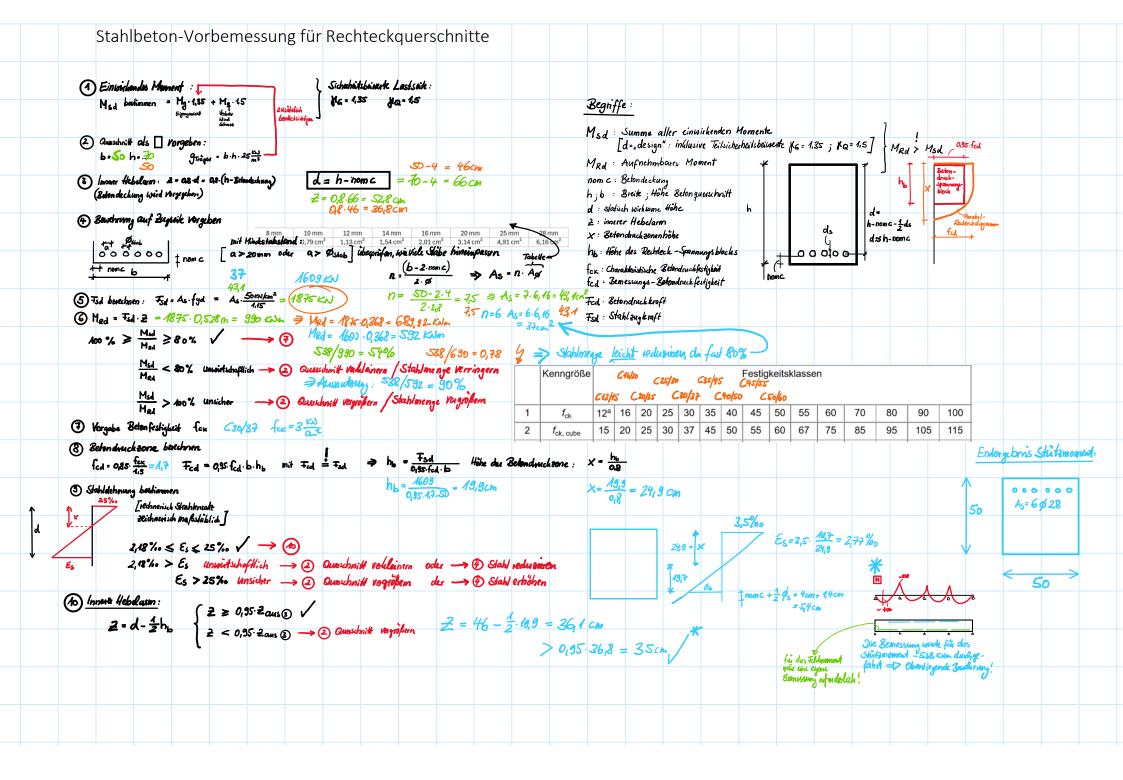



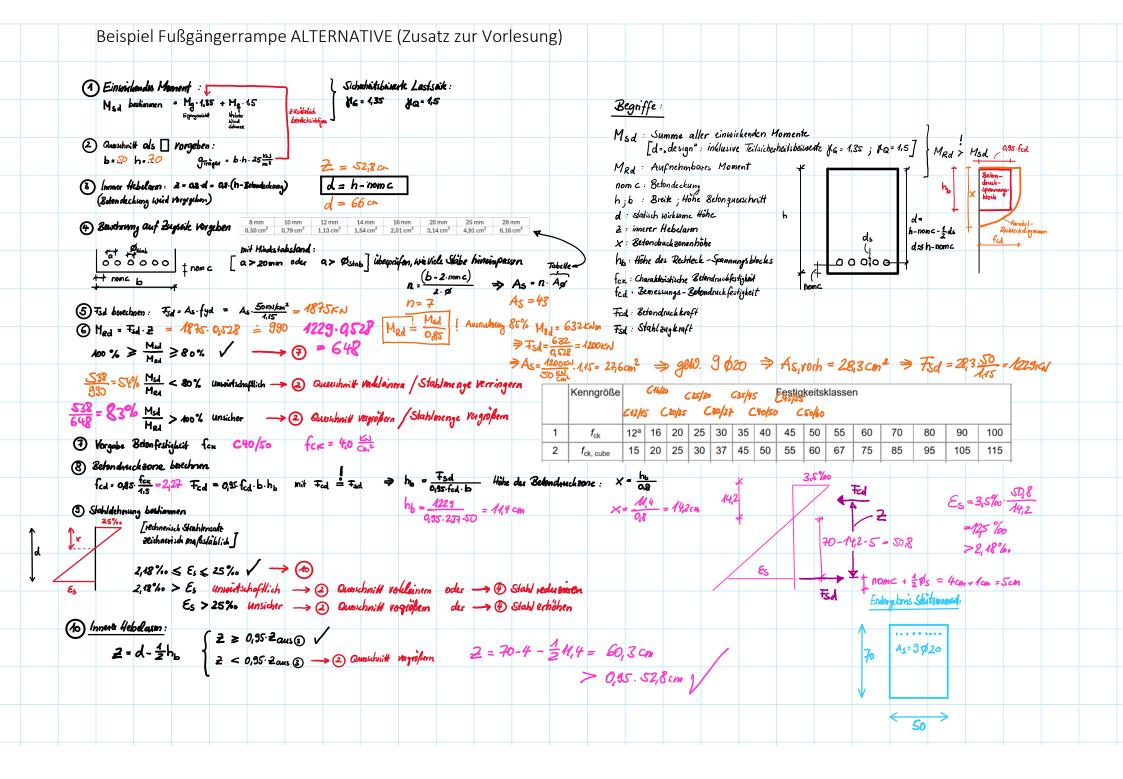

Bild 1: Beispiel für mehrere, gleichzeitig zutreffende Expositions- und Feuchtigkeitsklassen an einem Wohnhaus

Tafel 16: Betondeckung der Bewehrung für die indikative Mindestfestigkeitsklasse¹⁾des Betons

Expositionsklasse	Festigkeitsklasse f _{ek}	Stabdurchmesser ²⁾ Φ bzw. Φ _n [mm]	Mindestmaß c _{min} [mm]	Vorhaltemaß ^C _{dev} [mm]	Nennmaß C _{nom} [mm]
XC1	≥ C16/20	bis 10 12 - 14 16 - 20 25 28 32	$\begin{aligned} & c_{min,dur} = 10 \\ & c_{min,b} = 12 - 14 \\ & c_{min,b} = 16 - 20 \\ & c_{min,b} = 25 \\ & c_{min,b} = 28 \\ & c_{min,b} = 32 \end{aligned}$	10 10 10 10 10 10	20 25 30 35 40 45
XC2 XC3	≥ C16/20 ≥ C20/25	bis 20 25 28 32	C _{min,dur} = 20 C _{min,b} = 25 C _{min,b} = 28 C _{min,b} = 32	15 10 ⁻³⁾ 10 ⁻³⁾	35 35 40 45
XC4	I _{C25/30}	bis 25 28 32	$\begin{array}{c} c_{\text{min,dur}} = 25 \\ c_{\text{min,b}} = 28 \\ c_{\text{min,b}} = 32 \end{array}$	15 10 ³⁾ 10 ³⁾	40 40 45
XD1, XS1	≥ C30/37 ⁵⁾		0 + 40		
XD2, XS2	≥ C35/45 ⁵⁾	bis 32	C _{min,dur} + ΔC _{dur,γ}	15	55
XD3 ⁴⁾ , XS3	≥ C35/45 ⁵⁾		= 40		

¹⁾ Bei mehreren zutreffenden Expositionsklassen für ein Bauteil ist jeweils die Expositionsklasse mit der h\u00f6chsten Anforderung ma\u00e4gebend (indikative Mindestfestigkeitsklasse). Alle Angaben f\u00fcr Bei Stabbündeln ist anstelle Φ, der Vergleichsdurchmesser Φ_n maßgebend.
 Bei Stabbündeln ist anstelle Φ, der Vergleichsdurchmesser Φ_n maßgebend.
 Da Verbundsicherung maßgebilch, hier nur mit Δcω ≥ 10 mm nach DIN EN 1992-1-1, 4.4.1.2 (3)





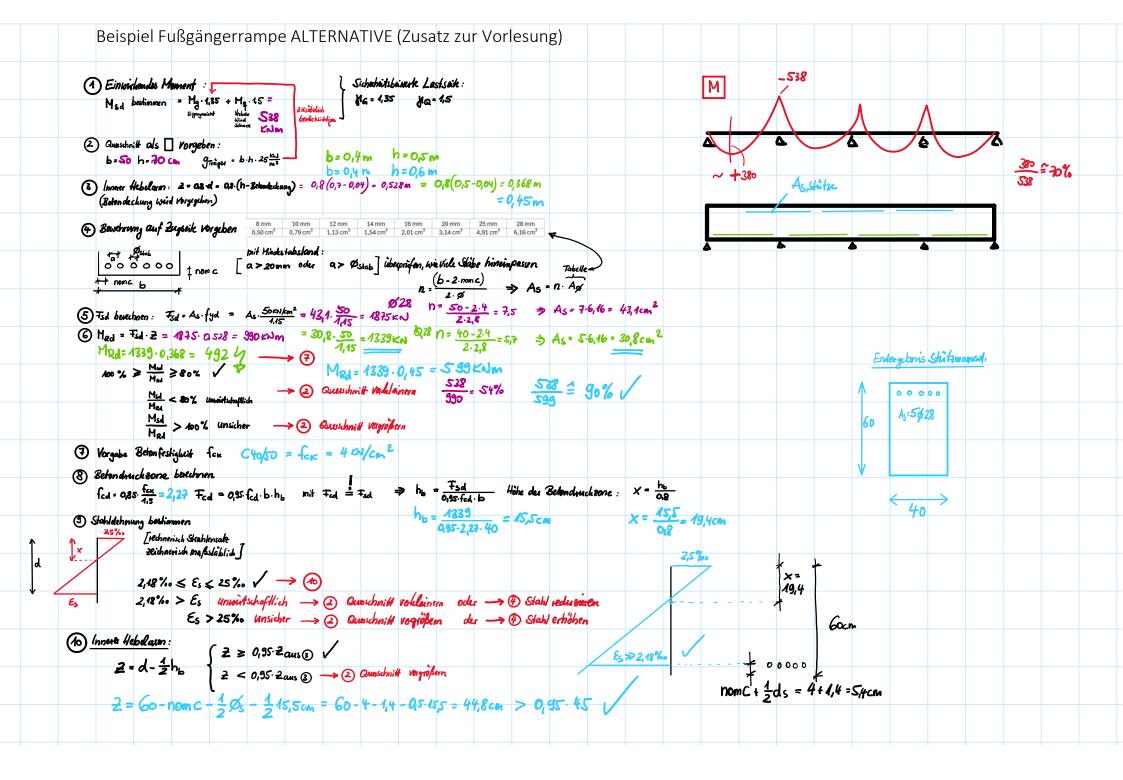

¹⁾ Für die genaue Berechnung des Verlegemaßes ist unter den einzelnen Nennma-Ben für Stäbe (c_{nom, ST}) und Bügel (c_{nom, BD}) und unter Berücksichtigung von anderen Bewehrungsebenen das jeweils maßgebende Verlegemaß c, für die jeweilige Bewehrungslage zu bestimmen.

Bild 2: Grafische Darstellung von Nennmaß und Verlegemaß der Betondeckung

Für XD3 sind ggf. zusätzlich besondere Maßnahmen zum Korrosionsschutz der Bewehrung notwendig. 9 Bei Luftporenbeton, z.B. wegen gleichzeitiger Expositionsklasse XF, eine Festigkeitsklasse niedriger.

