Studiengang Mechatronik

Modul 16:

FEM – Finite Elemente Methode

- 11. Vorlesung -

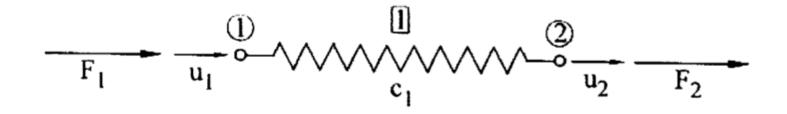
Prof. Dr. Enno Wagner

29. Januar 2025

Übersicht

- Matrix-Steifigkeits-Methode (Direct-Stiffness-Method)
 - Einzel-Element-Betrachtung
 - Gesamtsystem-Betrachtung
- Arbeiten mit der Koinzidenz-Matrix
 - Beispiel Zugstab mit unterschiedlichen Querschnitten
- Übungen

1 Federelement



$$F_1 = c_1 u_1 - c_1 u_2$$

$$F_2 = c_1 u_2 - c_1 u_1$$

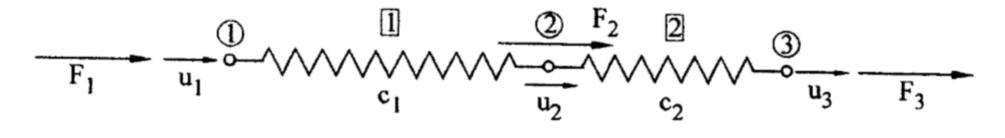
$$\begin{bmatrix} F_1 \\ F_2 \end{bmatrix} = \begin{bmatrix} c_1 & -c_1 \\ -c_1 & c_1 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$$

oder $\mathbf{f}_e = \mathbf{K}_e \, \mathbf{u}_e$

Quelle: Skript Prof. Albrecht, Frankfurt-UAS

3

2 Federelemente



2 Ansätze zur Steifigkeitsmatrix:

Einzel-Element-Betrachtung

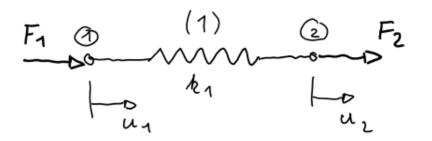
Gesamtsystem-Betrachtung

$$\begin{bmatrix} F_1 \\ F_2 \\ F_3 \end{bmatrix} = \begin{bmatrix} c_1 & -c_1 & 0 \\ -c_1 & c_1 + c_2 & -c_2 \\ 0 & -c_2 & c_2 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix}$$

Quelle:

Skript Prof. Albrecht, Frankfurt-UAS

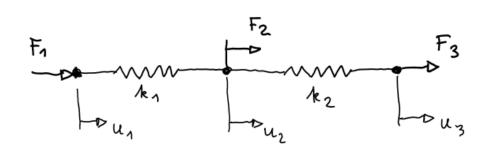
Federelement:



$$F_1 = h_n \cdot u_1 - k_n \cdot u_2$$

$$\begin{bmatrix}
F_1 \\
F_2
\end{bmatrix} = \begin{bmatrix}
k_1 & -k_1 \\
-k_1 & k_1
\end{bmatrix} \begin{bmatrix}
u_1 \\
u_2
\end{bmatrix} \quad \text{oder} \quad f_e = K_e u_e$$

Struktur mit 2 Elementen und 3 Knoten



1.) Anslenkung bei
$$u_1$$

$$u_1 = 1 ; u_2 = 0 ; u_3 = 0$$

$$F_1$$
 = $u_1 \cdot k_1$

$$=) F_{3} = 0$$

2.) Auslenkung bei
$$u_2$$

$$u_1 = 0 \quad j \quad u_2 = 1 \quad j \quad u_3 = 0$$

3.) Auslenkung bei
$$u_3$$

$$u_1 = 0 \quad ; \quad u_2 = 0 \quad ; \quad u_3 = 1$$

Aufstellen de Unoten-aleichungen (Kräftegleichgewicht)

$$o = F$$

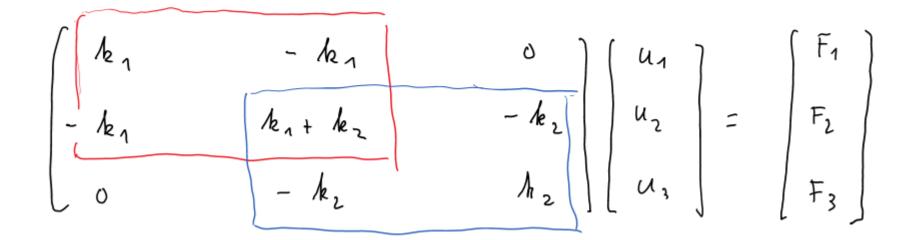
$$-u_3 le_2 = F_2$$

$$u_3 \cdot k_3 = F_3$$

$$=$$
 F_2

$$= F_3$$

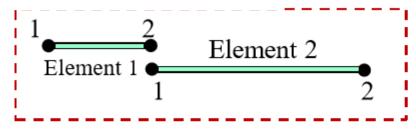
=) Mahix-Sdireibweise



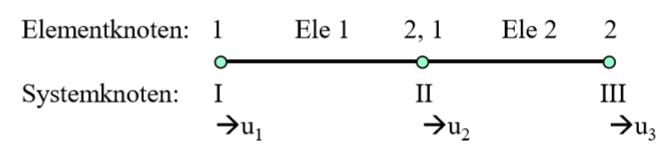
10

Vorgehen

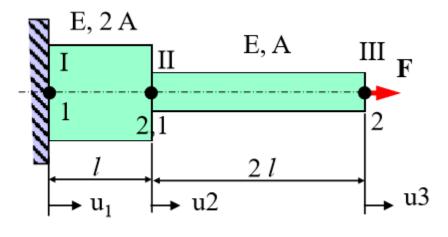
1. Struktur des Bauteils



Modell für das Beispiel

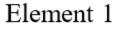


Beispiel



Matrix-Steifigkeitsmethode

2. Ermitteln der Elementsteifigkeiten



	1	2	
1	k1	-k1	
2	-k1	k1	

Element 2

	1 2			
1	k2 -k2			
2	-k2	k2		

$$k_1 = 2EA/l = k;$$

 $k_2 = EA/2l = k/4$

Element 1

	1	2
1	k	-k
2	-k	k

Element 2

	1	2
1	k/4	-k/4
2	-k/4	k/4

Koinzidenzmatrix

3. Kompatibilität der Verschiebungen an den Knoten herstellen=> Koinzidenz-Matrix

Modell für das Beispiel

Elementknoten: 1 2,1 2

Systemknoten: I Ele 1 II Ele 2 III

Element 1: (1,2) auf Element 2: (1,2) auf

System-Knoten

Formalismus

Die Verschiebung der Element-Knoten wird durch die Verschiebung der Systemknoten ersetzt.

4. Aufstellen der System-Steifigkeitsmatrix

Diese Matrix verknüpft die äußeren Knotenkräfte (hier 3) mit den Verschiebungen (hier 3). Die Anzahl der Zeilen N_Z und Spalten N_S ist gleich; sie entspricht der Anzahl der Freiheitsgrade (FG) des Systems:

hier \rightarrow Nz = N = 3 FG (u₁, u₂, u₃),

Knoten		I	II	III
	FG	u1	u2	u3
Ι	u1			
II	u2			
III	u3			

5. Platzieren der Elementsteifigkeitsmatrizen

Platzieren der Elementsteifigkeitsmatritzen in der Systemsteifigkeitsmatrix entsprechend

der Koinzidenzmatrix Kno IIIPositionieren der Matrixelemente von Element 1

Element 1 k1-k1 -k1 k1

Element 2

Positionieren der Matrixelemente von Element 2

		ten						
				FG	u1	u2	u3	
		I	ul	k1	-k1			
	1	2		II	u2	-k1	k1+k2	-k2
1	k2	-k2						
2	-k2	k2		III	u3		-k2	k2

Zusammenbau

Positionieren der Matrixelemente von Element 1 Kno II IIIten FG u3 u1 u2 u1 -k k Element 1 -k k -k k u2 -k/4II k+k/4-k k/4 -k/4Element 2 u3 -k/4k/4 III-k/4k/4

2. Positionieren der Matrixelemente von Element 2

Gleichungssystem

6. Aufstellen des Gleichungssystems

$$\begin{bmatrix} F_{K1} \\ F_{K2} \\ F_{K3} \end{bmatrix} = \begin{bmatrix} k_1 & -k_1 & 0 \\ -k_1 & k_1 + k_2 & -k_2 \\ 0 & -k_2 & k_2 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix}$$

$$\begin{bmatrix} F_{K1} \\ F_{K2} \\ F_{K3} \end{bmatrix} = \frac{k}{4} \begin{bmatrix} 4 & -4 & 0 \\ -4 & 4+1 & -1 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix}$$

mit $k_1=2EA/l=k$; $k_2=EA/2l=k/4$

Randbedingungen

7. Ermitteln der Randbedingungen

$$u_1 = 0 \rightarrow \text{Einspannung}; F_{K2} = 0 \rightarrow \text{keine äußere Kraft}; F_{K3} = F \rightarrow \text{äußere Kraft F}$$

8. Einsetzen der Randbedingungen und Erzeugen der reduzierten Matrix

$$\begin{bmatrix} F_{Lager} \\ 0 \\ F \end{bmatrix} = \frac{k}{4} \begin{bmatrix} -\frac{4}{4} & -\frac{4}{4} & -\frac{4}{4} \\ -\frac{4}{4} & 5 & -1 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ u_2 \\ u_3 \end{bmatrix}$$

Reduzierte Matrix

9. Darstellen der reduzierten Matrix:

$$\begin{bmatrix} 0 \\ F \end{bmatrix} = \frac{k}{4} \begin{bmatrix} 5 & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} u_2 \\ u_3 \end{bmatrix}$$

10. Berechnung der Verschiebungen:

$$u_2 = F/k$$
 (Verschiebung am Knoten 2)
 $u_3 = 5 F/k$ (Verschiebung am Knoten 3)

11. Berechnung der Lagerreaktion:

Auflagerkraft am Knoten 1
$$\rightarrow$$
 $[F_{k1}] = \frac{k}{4}[-4][u_2] = \frac{k}{4}[-4][\frac{F}{k}] = -F$

Quelle:

Skript Prof. Albrecht, Frankfurt-UAS

12. Berechnung der Spannungen

Element 1

$$\sigma_1 = E \ \varepsilon_1 = E \frac{u_2 - u_1}{l} = \frac{E}{l} \frac{F}{k_1} = \frac{E}{l} F \frac{l}{2 AE} = \frac{F}{2A}$$

$$\ddot{u}ber \quad \sigma_1 = \frac{F}{A_1} = \frac{F}{2A} \qquad \text{mit } u_1 = 0$$

Element 2

$$\sigma_2 = E \ \varepsilon_2 = E \frac{u_3 - u_2}{2l} = \frac{E}{2l} \frac{5F - F}{k} = \frac{E}{2l} \frac{4Fl}{2EA} = \frac{F}{A} \qquad \qquad \ddot{u}ber \qquad \sigma_1 = \frac{F}{A_2} = \frac{F}{A}$$

$$\ddot{u}ber \quad \sigma_1 = \frac{F}{A_2} = \frac{F}{A}$$

Gruppenübung

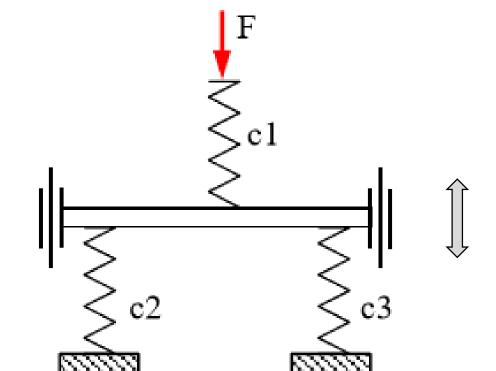
Übung 1

Gegeben:

$$c_1 = c_2 = c_3 = c$$

Gesucht:

u₁, u₂, Auflagerreaktion



Hinweis:

Nur vertikale Bewegung möglich (keine Drehung)

21

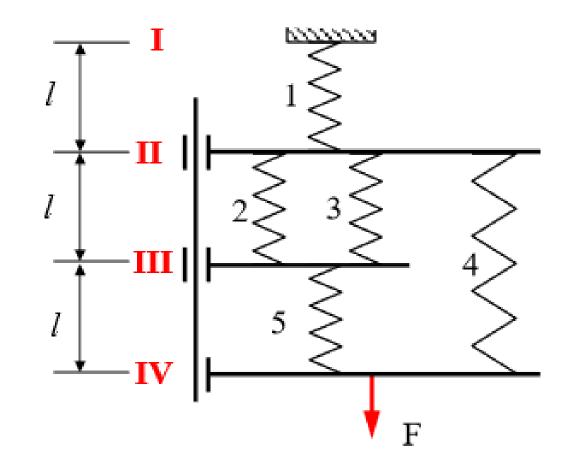
Übung 2

Gegeben:

I, A, E (nur vertikale Bewegung)

Gesucht:

u₁, u₂, u₃, Auflagerreaktion



Vielen Dank für die Aufmerksamkeit!

Hinweis

Diese Folien sind ausschließlich für den internen Gebrauch im Rahmen der Lehrveranstaltung an der Frankfurt University of Applied Sciences bestimmt. Sie sind nur zugänglich mit Hilfe eines Passwortes, dass in der Vorlesung bekannt gegeben wird.