Studiengang Mechatronik

Modul 16:

# FEM – Finite Elemente Methode

- 8. Vorlesung -

Prof. Dr. Enno Wagner

19. Dezember 2024



# Agenda heute

# Übersicht

- Wärmeübertragung
  - Natürliche Konvektion
  - Sieden
- Wärmerohre
- Forschung
  - 3-Phasen-Kontaktlinie



# Finite Elemente Methoden In der Thermodynamik



Arten des Wärmeübergangs:

1.) Wärmeleitung: 
$$R_{\lambda} = \frac{d}{\lambda \cdot A}$$
 (mit  $\lambda$  = Wärmeleitfähigkeit [W/mK])

2.) Konvektion:  $R_{\alpha} = \frac{1}{\alpha \cdot A}$  (mit  $\alpha$  = Wärmeübergangskoeffizient [W/m<sup>2</sup>K])

3.) Strahlung (hier nicht betrachtet)



Die Wärmeleitung erfolgt analog der elektrischen Leitung

$$\Delta U = R_{el} * I \qquad <=> \qquad \Delta T = R_{therm} * \dot{Q}$$

Die einzelnen Widerstände können (bei Reihenschaltung) einfach addiert werden:

$$\Phi = \frac{dQ}{dt} = \frac{T_1 - T_2}{\frac{1}{\alpha_1 \cdot A} + \frac{d}{\lambda \cdot A} + \frac{1}{\alpha_2 \cdot A}} = \frac{T_1 - T_2}{R_{\alpha 1} + R_{\lambda} + R_{\alpha 2}} = \frac{T_1 - T_2}{R_k}$$



# Wärmeleitung



#### Wärmeleitung durch ebene Wand

- Konvektion innen
- Wärmeleitung Wand
- Konvektion außen

$$\dot{q} = \frac{1}{R}(T_1 - T_2)$$

- $\dot{Q}$  = Wärmestrom [W]
- R = Wärmewiderstand [K/W]
- $\alpha$  = Wärmeübergangskoeffizient [W/mK]



| Stoff                            | t       | ρ               | c        | λ           | 10 <sup>6</sup> a / |
|----------------------------------|---------|-----------------|----------|-------------|---------------------|
| Aluminium 99 75 Al               | 20      | 2700            | 0,896    | 229         | 94,6                |
| Duraluminium                     | 20      | 2700            | 0,912    | 165         | 67.0                |
| Bervllium                        | 20      | 1850            | 1.80     | 159         | 47,8                |
| Blei (rein)                      | 0       | 11340           | 0,128    | 35,1        | 24,2                |
| Bronze (6 Sn. 9 Zn. 84 Cu. 1 Pb) | 20      | 8700-8900       | 0,377    | 61,7        | 18,6                |
| Cadmium                          | 0-100   | 8650            | 0,230    | 92.2        | 46,4                |
| Eisen                            |         | 120-2460        |          |             | Creber a            |
| Schmiedeeisen rein               | 0       | 7850            | 0,465    | 59          | 16,2                |
| Gußeisen 3% C                    | 20      | 7000-7700       | 0,540    | 58          | 14,7                |
| Bessemerstahl                    | 20      | 7830            | and star | 40          | Alder?"             |
| Chromnickelstahl                 | 20      | 7900            | 0,477    | 14,5        | 3,85                |
| V2A Stahl vergütet               | 20      | 8000            | 0,477    | 15          | 3,93                |
| Cr-Stahl (X8 Cr17) rost-         | ENT I I | The plan and al | Par      | a del Maria | and an              |
| und säurebeständig               | 20      | 7700            | 0,46     | 25,1        | 7,09                |
| Cr-Al-Stahl (X1o CrA124)         | r 8     | 5×8. 32. 12.    | 10 11    | nonadbr     | Porta               |
| hitzebeständig                   | 20      | 7600            | 0,50     | 16,7        | 4,41                |
| Manganstahl                      | 20      | and it is       | 0,502    | 41          | en modera           |
| Kobaltstahl 35 Co                | 20      | 8000            |          | 41          |                     |
| Wolframstahl                     | 20      | 8200            |          | 39          | Seringe             |
| Kesselblech H III                | 20      | 7900            | 0,47     | 52          | 14,1                |
| Gold (rein)                      | 20      | 19290           | 0,129    | 310         | 124                 |
| Gold-Platin (40 Au, 60 Pt)       | 25      |                 |          | 26          | Noonw               |
| (10 Au, 90 Pt)                   | 25      |                 |          | 76,3        | Sandb               |
| Iridium                          | 20      | 22500           | 0,130    | 58,6        | 20                  |
| Kalium                           | 20      | 860             | 0,741    | 196,3       | 1. navili           |
| Kobalt                           | 20      | 8900            | 0,414    | 69,1        | 18,7                |
| Konstantan (60 Cu, 40 Ni)        | 20      | 8800            | 0,410    | 22,6        | 5,69                |
| Kupfer, sehr rein                | 20      | 8930            | 0,383    | 395         | 115                 |
| Handelsware                      | 20      | 8300            | 0,419    | 372         | 107                 |

# Wärmeleitfähigkeit Metalle

- t Temperatur in <sup>0</sup>C ρ Dichte in kg/m<sup>3</sup>
- c,cp spezifische Wärmekapazität in kJ/kg K
- $\lambda$  Wärmeleitfähigkeit in W/m K
- 10<sup>6</sup>a Temperaturleitfähigkeit in m<sup>2</sup>/sek  $[a=\lambda/(c_p \rho)]$

<u>Quelle:</u> H. Beer, Thermodynamik III, TH Darmstadt



# Konvektive Wärmeübertragung

#### Freie (natürliche) Konvektion

Wärmeübertragung entsteht aufgrund von Dichteunterschieden als Folge von Temperaturunterschieden.

$$\mathbf{N}\mathbf{u=}f(\mathbf{Gr}\cdot\mathbf{Pr}),$$

#### mit der Nußelt-Zahl

$$Nu = \frac{\alpha l}{\lambda}$$

und der Grashof-Zahl

$$\operatorname{Gr} = \frac{g \, l^3}{v^2} \, \beta \, \Delta \vartheta$$

| Pr                 | Prandtl-Zahl,                                                                          |
|--------------------|----------------------------------------------------------------------------------------|
| α                  | Wärmeübergangskoeffizient,                                                             |
| l                  | Anströmlänge,                                                                          |
| g                  | Fallbeschleunigung,                                                                    |
| ν                  | kinematische Viskosität,                                                               |
| $\Delta \vartheta$ | Temperaturdifferenz zwischen Oberfläche $\vartheta_0$ und Fluid $\vartheta_{\infty}$ , |
| λ                  | Wärmeleitfähigkeit des Fluids,                                                         |
| β                  | räumlicher Wärmeausdehnungskoeffizient des Fluids, s. Gl. (5).                         |
|                    |                                                                                        |





Dimensionsloser Wärmeübergangskoeffizient





|      | NYTE OF |                | ch e d | 20 42   | 1      |                   | 2.5   | 0.201             |                   |        |
|------|---------|----------------|--------|---------|--------|-------------------|-------|-------------------|-------------------|--------|
| t    | ρ       | с <sub>р</sub> | c'p    | λ       | λ'     | 10 <sup>3</sup> β | 1o⁵ŋ  | 10 <sup>6</sup> v | 10 <sup>6</sup> a | Pr     |
|      |         | 1.263          | 1010   | 1205-10 |        | 10                |       |                   | st nr.            | 0.6364 |
| -150 | 2,793   | 1,028          | 0,245  | 0,0120  | 0,0103 | 8,21              | 0,870 | 3,11              | 4,19              | 0.74   |
| -100 | 1,980   | 1,011          | 0,241  | 0,0165  | 0,0142 | 5,82              | 1,18  | 5,96              | 8,28              | 0,72   |
| - 50 | 1,534   | 1,007          | 0,240  | 0,0206  | 0,0177 | 4,51              | 1,47  | 9,55              | 13,4              | 0,715  |
| 0    | 1,2930  | 1,006          | 0,240  | 0,0243  | 0,0209 | 3,67              | 1,72  | 13,30             | 18,7              | 0,711  |
| 20   | 1,2045  | 1,007          | 0,240  | 0,0257  | 0,0221 | 3,43              | 1,82  | 15,11             | 21,4              | 0,713  |
| 40   | 1,1267  | 1,008          | 0,241  | 0,0271  | 0,0233 | 3,20              | 1,91  | 16,97             | 23,9              | 0,711  |
| 60   | 1,0595  | 1,009          | 0,241  | 0,0285  | 0,0245 | 3,00              | 2,00  | 18,90             | 26,7              | 0,709  |
| 80   | 0,9998  | 1,010          | 0,241  | 0,0299  | 0,0257 | 2,83              | 2,10  | 20,94             | 29,6              | 0,708  |
| 100  | 0,9458  | 1,012          | 0,242  | 0,0314  | 0,0270 | 2,68              | 2,18  | 23,06             | 32,8              | 0,704  |
| 120  | 0,8980  | 1,014          | 0,242  | 0,0328  | 0,0282 | 2,55              | 2,27  | 25,23             | 36,1              | 0,70   |
| 140  | 0,8535  | 1,017          | 0,242  | 0,0343  | 0,0295 | 2,43              | 2,35  | 27,55             | 39,7              | 0,694  |
| 160  | 0,8150  | 1,020          | 0,243  | 0,0358  | 0,0308 | 2,32              | 2,43  | 29,85             | .43,0             | 0,693  |
| 180  | 0,7785  | 1,023          | 0,244  | 0,0372  | 0,0320 | 2,21              | 2,51  | 32,29             | 46,7              | 0,69   |
| 200  | 0,7457  | 1,026          | 0,245  | 0,0386  | 0,0332 | 2,11              | 2,58  | 34,63             | 50,5              | 0,685  |
| 250  | 0,6745  | 1,035          | 0,247  | 0,0421  | 0,0362 | 1,91              | 2,78  | 41,17             | 60,3              | 0,68   |
| 300  | 0,6157  | 1,046          | 0,250  | 0,0454  | 0,0390 | 1,75              | 2,95  | 47,85             | 70,3              | 0,68   |
| 350  | 0,5662  | 1,057          | 0,252  | 0,0485  | 0,0417 | 1,61              | 3,12  | 55,05             | 81,1              | 0,68   |
| 400  | 0,5242  | 1,069          | 0,255  | 0,0516  | 0,0443 | 1,49              | 3,28  | 62,53             | 91,9              | 0,68   |
| 450  | 0,4875  | 1,081          | 0,258  | 0,0543  | 0,0467 | -                 | 3,44  | 70,54             | 103,1             | 0,685  |

Temperatur in °C Dichte in kg/m<sup>3</sup> ρ c<sub>p</sub> spezifische Wärme bei konstantem Druck in kJ/kg K c' spezifische Wärme bei konstantem Druck in kcal/kg K Wärmeleitfähigkeit in W/mK λ  $\lambda'$  Wärmeleitfähigkeit in kcal/m h K thermische Ausdehnungszahl in 1/K ß dynamische Viskosität in kg/m sek n kinematische Viskosität in m<sup>2</sup>/sek ν Temperaturleitfähigkeit in m<sup>2</sup>/sek a Pr = v/a Prandtl-Zahl

<u>Quelle:</u>

H. Beer, Thermodynamik III, TH Darmstadt



<u>Verbesserung mittels Strömung</u> und dichtere Fluide:

 $\Rightarrow$  Wärmeübergangskoeffizient  $\alpha$  = 4 W/m<sup>2</sup>K

Beispiel-Berechnung für 100 x 100 mm Fläche, 80°C

näherungsweise (Quelle: Wikipedia)

- Medium Luft:  $lpha=12\cdot\sqrt{v}+2$
- Medium Wasser:  $lpha=2100\cdot\sqrt{v}+580$

Mit Strömungsgeschwindigkeit v [m/s]



11



Natürliche Konvektion

Wandtemperatur

 $\Rightarrow$  Sehr gering !!



#### **Beispiel: Rundstab**



# Übung zur Veranschaulichung

Berechnen Sie die Heißkörper-Temperatur

M = Kupfer L = 0,3 m  $\emptyset$  = 8 mm A = 0,00005 m<sup>2</sup>  $\dot{Q}$  = 100 W T<sub>KK</sub> = 0°C

Wie hoch muss  $T_{HK}$  sein?



Wenn man z. B. über einen **massiven Kupferstab** mit 8 mm Durchmesser über eine Länge von 300 mm eine Wärmemenge von 100 Watt übertragen, würde man ein treibendes Temperaturgefälle von theoretisch 1493 °C benötigen, ein utopischer Wert der jenseits der Schmelztemperatur von Kupfer liegt.

Eine **Heatpipe** schafft den gleichen Wärmedurchsatz mit einem treibenden Temperaturgefälle von ca. 0,5°C



- Wie funktioniert so eine Heat-Pipe?
- Warum können sie so große Wärmeströme bei kleinem  $\Delta T$  übertragen?
- Welche weiteren Möglichkeiten gibt es, Wärme ohne große Temperaturdifferenzen zu übertragen?



Behältersieden und Sprühkühlung

Quelle:

Diss. C. Sodtke

=> Behältersieden α = 50.000 W/mK





Wärmeübertragung

Behältersieden

Übergang von flüssige in gasförmige Phase

Latente Wärme => sehr große Verdampfungsenthalpie!





Behältersieden

#### Mechanismen der Wärmeübertragung beim Behältersieden





# Wärmeübertragung

#### Siedekurve beim Behältersieden

Quelle:

Diss. E. Wagner

Unterschiedliche Phasen der Wärmeübertragung





# Wärmerohre (Heatpipes)



#### **Heatpipes**

Das Prinzip der Heatpipe ließ sich der amerikanische GM-Ingenieur Richard S. Gaugler 1944 patentieren. Die Entwicklung wurde 1963 von George M. Grover et al. wiederentdeckt, als man für das amerikanische Raumfahrtprogramm nach effizienten passiven Wärmetransportmöglichkeiten suchte.



## Wärmerohre (Heat pipes)

Wärmeleitfähigkeit Kupfer

 $\lambda_{Cu}$  = 400 W/mK

Wärmeleitfähigkeit Heat Pipe  $\lambda_{HP}$  = 100.000 W/mK





# Axiale Druckverläufe in einem Wärmerohr

Quelle: Diss. Brandt





#### Kapillarstrukturen

Optimierter Flüssigkeitstransport

- 1 Netzstruktur
- 2 Sinterstruktur
- 3 offene Axialrillen
- 4, 5, 6 kombinierte Strukturen









Dreieckige Axialrillen rechteckige Axialrillen

Re-Entrant Axialrillen Hochleistungskapilarstruktur



Lokale Phänomene beim Wärmeübergang in Wärmerohren

$$k = \frac{\dot{q}}{\overline{\overline{T}}_{\rm W} - T_{\rm sat}}$$

Betrachtung eines finiten Elementes Lokale Berechnung von

- Impulsbilanz
- Energiebilanz
- Stoffbilanz





#### **Numerische Simulation**

- Sehr hohe Auflösung im Bereich der "Mikrozone"
- Finite Elemente < 0,1  $\mu$ m
- Mäßige Auflösung im Bereich der Makrozone
- Finite Elemente < 1 mm



#### Wärmerohre



#### **Ergebnis der Simulation**

Extrem hoher Peak der Wärmestromdichte im Bereich der Mikrozone (3-Phasen-Kontaktlinie) Räumliche Ausdehnung ca. 1 µm !



Bild 6.6: Filmdicke  $\delta$  und Wärmestromdichte  $\dot{q}_{\rm mic}$  in Abhängigkeit von der Koordinate  $\xi$  $(T_{\rm sat} = 70^{\circ}\text{C}, \dot{q} = 26000 \text{ W/m}^2, \beta = 8^{\circ}, z = L_{\rm a})$ 



Wärmeübergang in Wärmerohren mit unterschiedlichen Strukturen

In Abhängigkeit des Neigungswinkels  $\boldsymbol{\beta}$ 

Quelle: Diss. Brandt





#### Wärmeübergang in Wärmerohren mit unterschiedlichen Strukturen

In Abhängigkeit der Wärmestromdichte

Ergebnis: Wärmeübergangskoeffizient  $\alpha = 8000 \text{ W/m}^2\text{K}$ 



Quelle: Diss. Brandt



#### Auslegung von Wärmerohren – Maßgeblich ist der Temperaturbereich

| Arbeitstemperatur (°C)    | Arbeitsmedium        | Hüllmaterial         |  |  |
|---------------------------|----------------------|----------------------|--|--|
|                           |                      |                      |  |  |
| – 200 bis- <del>8</del> 0 | Flüssiger Stickstoff | Edelstahl            |  |  |
| –70 bis 60                | Ammoniak             | Aluminium, Edelstahl |  |  |
| -45 bis 120               | Methanol             | Kupfer, Edelstahl    |  |  |
| 5 bis 300                 | Wasser               | Kupfer               |  |  |
| 190 bis 550               | Quecksilber          | Edelstahl            |  |  |
| 400 bis 800               | Kalium               | Edelstahl            |  |  |
| 500 bis 900               | Natrium              | Edelstahl            |  |  |



# **Thermodynamik-Forschung:**

# Experimentelle Untersuchung des Wärmeübergangs an der 3-Phasen-Kontaktlinie



#### Warum Siede-Forschung ?

#### Hintergrund:

Sehr hohe Wärmestromdichten an Brennstäben von Kernreaktoren

# Hintergrund Siede-Forschung



#### **Probleme beim Blasensieden:**

- Durch die Bildung großer Wasser-Dampfblasen entstehen Hot-Spots in denen praktisch keine Wärme abgeführt werden kann => Gefahr durchbrennender Brennstäbe
- Nur aufwendige empirische Modelle zur Berechnung des Wärmeübergangs verfügbar
- Gültigkeit der Modelle nur für bestimmte Fluide, Heizwände
- Physikalische Mechanismen sehr komplex und nicht hinreichend verstanden



# Modellbildung: Theorie der Mikrozonen



Ansatz von Stephan, P. und Hammer, J.: A new model for nucleate boiling heat transfer. Springer Wärme- und Stoffübertragung, 30: 119-125 (1994)

- Einzelne Dampfblase
   wächst an definierter
   Keimstelle auf Heiz-wand
   an und steigt in
   Siedeflüssigkeit auf
- Adsorbierter Film (wenige Moleküllagen) ist adiabate Zone
- Starke lokale Verdampfung im Bereich der 3-Phasen-Kontaktlinie → "Mikrozone"



#### Wärmestromdichte in der "Mikrozone" – im Bereich der 3-Phasen-Kontaktlinie



- Theoretisch/numerische Modelle
- Implementierung der Mikrozone in Blasensiedemodell (Stephan, Hammer 1994) → q<sub>mic</sub> = 15 · 10<sup>6</sup> W/m<sup>2</sup>

#### **Herausforderung:**

Messtechnische Validierung, sehr hoher Wärmeströme auf extrem kleinen Abmessungen bei sehr großer Dynamik



# Konstruktion einer Siedeapparatur



- Erzeugung von Einzelblasen in einer kleinen metallischen Siedezelle
- Optische Zugänge von 3 Seiten und von unten
- Vollständige Temperierung im Wasserbad
- unabhängige Druckeinstellung
- Mikroskop-High-Speed Kamera für die Blasenkontur
- Mikroskop-High-Speed IR Kamera f
  ür die Aufnahme der Heizwand-R
  ückseite





# Entwicklung Folienheizer

- 10-50 μm dicke Edelstahlfolie (1) auf Kupfersockel (3) fixiert
- Eine mittige künstliche Keimstelle (FIB,  $\emptyset$  = 20  $\mu$ m)
- Kontaktierung mit gekühlten Elektroden (2) zur elektrischen Widerstands-Beheizung
- Optischer Zugang von Unten durch IR transparentes Substrat (6)
- Druckausgleichsbohrung (7)
- Kühlmittelbohrungen (11) in Grundplatte (5) zur Unterdrückung von Blasensieden

#### Sonstige Daten:

- Arbeitsmittel: HFE-7100, FC-84, FC-3284
- Druckbereich: 300 950 mbar
- Temperaturbereich: 30 80 °C



# Darstellung Blasengeometrie





#### Micro PIV





# Blasendynamik



Gastvortrag KIT // Dr. Enno Wagner



# Temperaturabdruck mittels IR Bildern





- Auf einer 20 μm dicken Edelstahlfolie ist der "Temperaturabdruck" des Blasenfußes gut erkennbar
- Im Bereich der 3-Phasen-Kontaktlinie tritt eine ringförmige Abkühlung auf
- Der innere Bereich der Dampfblase heizt sich während des Blasenwachstums auf
- Die Annahme einer adiabaten Zone kann folglich bestärkt werden



#### IR Analyse der Heizwand



Gastvortrag KIT // Dr. Enno Wagner



#### Zerlegung der Heizwand in Finite Elemente





# Darstellung der lokalen Wärmestromdichte



- Ringförmiger Bereich hoher
   Wärmestromdichte im Bereich der 3-Phasen-Kontaktlinie
- Höchste Wärmestromdichte bei Beginn des Blasenwachstums
- Geringe Wärmestromdichte am Umschlagpunkt
- Innerer Bereich der Dampfblase praktisch adiabat
- Wie hoch ist der maximale Mikrozonen-Wärmestrom?



# Validierung

#### Variation der Foliendicke



#### Variation der Aufnahmefrequenz



Gastvortrag KIT // Dr. Enno Wagner

**Ergebnis:** 

# Ergebnis

Unschärferelation der Peak-Wärmeströme

- Verringerung der Heizfolien-Dicke (50, 20, 10  $\mu$ m) => Wärmestrom vs. Unschärfe
- Erhöhung der Aufnahmefrequenz (500, 1000, 2000 Hz) • => Wärmestrom vs. Rauschen
- Verlangsamung der Blasenfrequenz (Parabelflug) => Wärmestrom vs. Geschwindigkeit



45





#### Zusammenfassung

- Numerische Modelle zeigen sehr hohe Wärmestromdichten in einem schmalen Bereich an der 3-Phasen-Kontaktlinie ("Mikrozone")
- Mit einer komplexen Siedeapparatur und mittels örtlich und zeitlich hochauflösender Messtechniken konnte der Effekt auch experimentell sichtbar gemacht werden
- Numerische und experimentelle Ergebnisse konnten erfolgreich validiert werden die Wärmestromdichten sind in einer vergleichbaren Größenordnung

#### Frage

• Wie kann diese Erkenntnis auf ein technisches Verfahren wie Kühlung von Leistungselektronik angewandt werden ?







#### Vielen Dank für die Aufmerksamkeit !



#### **Hinweis**

Diese Folien sind ausschließlich für den internen Gebrauch im Rahmen der Lehrveranstaltung an der Frankfurt University of Applied Sciences bestimmt. Sie sind nur zugänglich mit Hilfe eines Passwortes, dass in der Vorlesung bekannt gegeben wird.