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Agenda heute

Übersicht

• Wärmeübertragung
• Natürliche Konvektion

• Sieden

• Wärmerohre

• Forschung 
• 3-Phasen-Kontaktlinie
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Finite Elemente Methoden 

In der 

Thermodynamik
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Wärmeübertragung

Arten des Wärmeübergangs:

1.) Wärmeleitung: 𝑅𝜆 =
𝑑

𝜆∙𝐴
  (mit  = Wärmeleitfähigkeit [W/mK])

2.) Konvektion: 𝑅𝛼 =
1

𝛼∙𝐴
  (mit  = Wärmeübergangskoeffizient [W/m2K])

3.) Strahlung (hier nicht betrachtet)
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Wärmeleitung

Die Wärmeleitung erfolgt analog der elektrischen Leitung

 U = Rel * I  <=>  T = Rtherm * ሶ𝑄

Die einzelnen Widerstände können (bei Reihenschaltung) einfach addiert werden:
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Wärmeleitung

Wärmeleitung durch ebene Wand
• Konvektion innen

• Wärmeleitung Wand

• Konvektion außen

ሶ𝑞 =
1

𝑅
𝑇1 − 𝑇2
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T1

d



ሶ𝑄 T2

2
1

ሶ𝑄 = Wärmestrom [W]
R = Wärmewiderstand [K/W]
 = Wärmeübergangskoeffizient [W/mK]



Wärmeleitfähigkeit Metalle
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Quelle:
H. Beer, Thermodynamik III, 
TH Darmstadt



Konvektive Wärmeübertragung

Freie (natürliche) Konvektion

Wärmeübertragung entsteht aufgrund 
von Dichteunterschieden als Folge von 
Temperaturunterschieden.
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TW

T

Aufsteigende 
Luftströmung



Dimensionsloser Wärmeübergangskoeffizient
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Für ebene PlattenFür senkrechte Platten



Stoffwerte für trockene Luft
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Quelle:
H. Beer, Thermodynamik III, 
TH Darmstadt



Wärmeübertragung

Natürliche Konvektion

Beispiel-Berechnung für 100 x 100 mm Fläche, 80°C 
Wandtemperatur

 Wärmeübergangskoeffizient  = 4 W/m2K

 Sehr gering !!

Verbesserung mittels Strömung und dichtere Fluide:

 näherungsweise (Quelle: Wikipedia)
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Mit 
Strömungs-
geschwindigkeit 
v [m/s] 



Übung zur Veranschaulichung

Beispiel: Rundstab
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Heisskörper

THK

Kaltkörper

TKK

L

A, 

ሶ𝑄

Berechnen Sie die 
Heißkörper-Temperatur

M = Kupfer
L = 0,3 m
 = 8 mm
A = 0,00005 m2

    = 100 W
TKK = 0°C

Wie hoch muss THK sein?

ሶ𝑄



Wärmeübertragung

Wenn man z. B. über einen massiven Kupferstab mit 8 mm Durchmesser 
über eine Länge von 300 mm eine Wärmemenge von 100 Watt übertragen, 
würde man ein treibendes Temperaturgefälle von theoretisch 1493 °C 
benötigen, ein utopischer Wert der jenseits der Schmelztemperatur von 
Kupfer liegt. 

Eine Heatpipe schafft den gleichen Wärmedurchsatz mit einem treibenden 
Temperaturgefälle von ca. 0,5°C
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Herausforderung

• Wie funktioniert so eine Heat-Pipe?

• Warum können sie so große Wärmeströme bei kleinem T 
übertragen?

• Welche weiteren Möglichkeiten gibt es, Wärme ohne große 
Temperaturdifferenzen zu übertragen?
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Erhöhter Wärmeübergang

Behältersieden

und 

Sprühkühlung

Quelle:

Diss. C. Sodtke
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=> Behältersieden 
 = 50.000 W/mK



Wärmeübertragung

Behältersieden

Übergang von flüssige in 
gasförmige Phase

Latente Wärme => sehr große 
Verdampfungsenthalpie! 
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Behältersieden

Mechanismen der Wärmeübertragung beim Behältersieden
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Wärmeübertragung

Siedekurve beim 
Behältersieden

Quelle: 

Diss. E. Wagner

Unterschiedliche 
Phasen der 
Wärmeübertragung
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Wärmerohre

(Heatpipes)
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Heatpipes

Das Prinzip der Heatpipe ließ sich der amerikanische GM-Ingenieur Richard S. 
Gaugler 1944 patentieren. Die Entwicklung wurde 1963 von George M. 
Grover et al. wiederentdeckt, als man für das amerikanische Raumfahrt-
programm nach effizienten passiven Wärmetransportmöglichkeiten suchte. 
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Wärmerohre

Wärmerohre (Heat pipes)

Wärmeleitfähigkeit Kupfer

Cu = 400 W/mK

Wärmeleitfähigkeit Heat Pipe

 HP = 100.000 W/mK
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Wärmerohre
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Axiale 
Druckverläufe 
in einem 
Wärmerohr

Quelle:
Diss. Brandt



Wärmerohre

Kapillarstrukturen

Optimierter Flüssigkeitstransport

1 -  Netzstruktur

2 – Sinterstruktur

3 – offene Axialrillen

4, 5, 6 – kombinierte Strukturen

Quelle: Diss. Brandt
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Wärmerohre
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Dreieckige                       rechteckige                         Re-Entrant                   Hochleistungs-                              
   Axialrillen                        Axialrillen                           Axialrillen                    kapilarstruktur



Wärmerohre

Lokale Phänomene beim Wärmeübergang 
in Wärmerohren

Betrachtung eines finiten Elementes

Lokale Berechnung von 

• Impulsbilanz

• Energiebilanz

• Stoffbilanz 
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Wärmerohre

Numerische Simulation

• Sehr hohe Auflösung im 
Bereich der „Mikrozone“

• Finite Elemente < 0,1 m

• Mäßige Auflösung im Bereich 
der Makrozone

• Finite Elemente < 1 mm
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Wärmerohre

Ergebnis der Simulation

Extrem hoher Peak der 
Wärmestromdichte im 
Bereich der Mikrozone 
(3-Phasen-Kontaktlinie)

Räumliche Ausdehnung 
ca. 1 m !
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Wärmerohre

Wärmeübergang in 
Wärmerohren mit 
unterschiedlichen 
Strukturen 

In Abhängigkeit des 
Neigungswinkels 

Quelle: Diss. Brandt
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Wärmerohre

Wärmeübergang in 
Wärmerohren mit 
unterschiedlichen Strukturen 

In Abhängigkeit der 
Wärmestromdichte

Ergebnis: 

Wärmeübergangskoeffizient

 = 8000 W/m2K

Quelle: Diss. Brandt
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Wärmerohre
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Auslegung von Wärmerohren – Maßgeblich ist der Temperaturbereich



Thermodynamik-Forschung:

Experimentelle Untersuchung 
des Wärmeübergangs an der 

3-Phasen-Kontaktlinie
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Warum Siede-Forschung ?

Hintergrund: 
Sehr hohe Wärmestromdichten an Brennstäben 
von Kernreaktoren

Probleme beim Blasensieden: 

• Durch die Bildung großer Wasser-Dampfblasen entstehen Hot-Spots in denen praktisch 
keine Wärme abgeführt werden kann => Gefahr durchbrennender Brennstäbe

• Nur aufwendige empirische Modelle zur Berechnung des Wärmeübergangs verfügbar

• Gültigkeit der Modelle nur für bestimmte Fluide, Heizwände

• Physikalische Mechanismen sehr komplex und nicht hinreichend verstanden

32

Hintergrund Siede-Forschung

19.07.2018 Gastvortrag KIT //  Dr. Enno Wagner



Ansatz von Stephan, P. und Hammer, J.: A new model for nucleate boiling heat 
transfer. Springer Wärme- und Stoffübertragung, 30: 119-125 (1994)
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Modellbildung: Theorie der Mikrozonen
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• Einzelne Dampfblase 
wächst an definierter 
Keimstelle  auf Heiz-wand 
an und steigt in 
Siedeflüssigkeit auf

• Adsorbierter Film (wenige 
Moleküllagen) ist 
adiabate Zone

• Starke lokale Ver-
dampfung im Bereich der 
3-Phasen-Kontaktlinie → 
„Mikrozone“

liquid

T
sat

vapour

r (t)

Flüssigkeit

Dampf

r(t)

Dampf

Heizwand

liquid

T
sat

vapour

r (t)

Flüssigkeit

Dampf
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Dampf
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Wärmestromdichte in der „Mikrozone“ – im Bereich der 3-Phasen-Kontaktlinie
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Numerische Berechnung

19.07.2018 Gastvortrag KIT //  Dr. Enno Wagner

• Theoretisch/numerische Modelle

• Implementierung der Mikrozone in 
Blasensiedemodell (Stephan, Hammer 
1994) → qmic = 15  106 W/m2 

Herausforderung: 

Messtechnische Validierung, sehr hoher 
Wärmeströme auf extrem kleinen 
Abmessungen bei sehr großer Dynamik   
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Konstruktion einer Siedeapparatur
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• Erzeugung von Einzelblasen in 
einer kleinen metallischen 
Siedezelle

• Optische Zugänge von 3 Seiten 
und von unten

• Vollständige Temperierung im 
Wasserbad

• unabhängige Druckeinstellung

• Mikroskop-High-Speed Kamera 
für die Blasenkontur

• Mikroskop-High-Speed IR 
Kamera für die Aufnahme der 
Heizwand-Rückseite



• 10-50 µm dicke Edelstahlfolie (1) auf Kupfersockel (3) fixiert

• Eine mittige künstliche Keimstelle (FIB,  = 20 m)

• Kontaktierung mit gekühlten Elektroden (2) zur elektrischen 
Widerstands-Beheizung

• Optischer Zugang von Unten durch IR transparentes Substrat (6)

• Druckausgleichsbohrung (7)

• Kühlmittelbohrungen (11) in Grundplatte (5) zur Unterdrückung 
von Blasensieden

Sonstige Daten:

• Arbeitsmittel: HFE-7100, FC-84, FC-3284

• Druckbereich: 300 - 950 mbar

• Temperaturbereich: 30 - 80 °C
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Entwicklung Folienheizer
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Darstellung Blasengeometrie
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Micro PIV
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Blasendynamik
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Bedingungen:

Fluid: HFE-7100

qel = 0,7 W/cm2

psys = 500 mbar

tsat = 40°C

38,0

40,0

42,0

44,0

46,0

48,0

50,0

0 25 50 75 100 125 150

t M
T

E
S
 [

°C
]

0

0,2

0,4

0,6

0,8

1

1,2

 P
IF

 [
-]

MTES

PIF

54,0

54,4

54,8

55,2

55,6

0 25 50 75 100 125 150

Zeit    [ms]

 t
H

F
 [

°C
]

0,0

0,4

0,8

1,2

1,6

d
B
 [

m
m

]

t_HF

d_BF

Verhalten in 
der Flüssigkeit

Verhalten an 
der Heizwand



40

Temperaturabdruck mittels IR Bildern
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• Auf einer 20 µm dicken Edelstahlfolie ist der 
„Temperaturabdruck“ des Blasenfußes gut erkennbar 

• Im Bereich der 3-Phasen-Kontaktlinie tritt eine 
ringförmige Abkühlung auf 

• Der innere Bereich der Dampfblase heizt sich 
während des Blasenwachstums auf 

• Die Annahme einer adiabaten Zone kann folglich 
bestärkt werden
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Berechnung der lokalen Wärmestromdichte

19.07.2018 Gastvortrag KIT //  Dr. Enno Wagner

IR Analyse der Heizwand

Temperaturbilder Diskretisierung Wärmestromdichtebilder



Zerlegung der Heizwand in Finite Elemente

15.12.2025 FEM – Prof. Dr. Enno Wagner 42



43

Darstellung der lokalen Wärmestromdichte

19.07.2018 Gastvortrag KIT //  Dr. Enno Wagner

• Ringförmiger Bereich hoher 
Wärmestromdichte im Bereich 
der 3-Phasen-Kontaktlinie 

• Höchste Wärmestromdichte bei 
Beginn des Blasenwachstums

• Geringe Wärmestromdichte am 
Umschlagpunkt

• Innerer Bereich der Dampfblase 
praktisch adiabat

• Wie hoch ist der maximale 
Mikrozonen-Wärmestrom?q [W/m2]
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Validierung

19.07.2018 Gastvortrag KIT //  Dr. Enno Wagner
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Ergebnis

19.07.2018 Gastvortrag Dr. Enno Wagner

• Unschärferelation der Peak-Wärmeströme

• Verringerung der Heizfolien-Dicke (50, 20, 10 m)      
=> Wärmestrom vs. Unschärfe

• Erhöhung der Aufnahmefrequenz (500, 1000, 2000 Hz) 
=> Wärmestrom vs. Rauschen

• Verlangsamung der Blasenfrequenz (Parabelflug)        
=> Wärmestrom vs. Geschwindigkeit

Numerische Berechnung

ሶ𝑞𝑚𝑖𝑐,𝑚= 3,5 106 W/m2

Messung / Experiment

ሶ𝑞𝑚𝑖𝑐,𝑚𝑎𝑥= 2,7 105 W/m2

Ergebnis:



Zusammenfassung
• Numerische Modelle zeigen sehr hohe Wärmestromdichten in einem schmalen 

Bereich an der 3-Phasen-Kontaktlinie („Mikrozone“)

• Mit einer komplexen Siedeapparatur und mittels örtlich und zeitlich hochauflösender 
Messtechniken konnte der Effekt auch experimentell sichtbar gemacht werden

• Numerische und experimentelle Ergebnisse konnten erfolgreich validiert werden – die 
Wärmestromdichten sind in einer vergleichbaren Größenordnung

Frage

• Wie kann diese Erkenntnis auf ein technisches Verfahren wie Kühlung von 
Leistungselektronik angewandt werden ?
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Fazit
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Vielen Dank für die Aufmerksamkeit !
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Impressum

Hinweis

Diese Folien sind ausschließlich für den internen Gebrauch im Rahmen der 
Lehrveranstaltung an der Frankfurt University of Applied Sciences bestimmt. Sie sind nur 
zugänglich mit Hilfe eines Passwortes, dass in der Vorlesung bekannt gegeben wird.
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