Studiengang Mechatronik

Modul 16:

FEM – Finite Elemente Methode

- 4. Übung -

Prof. Dr. Enno Wagner

21. November 2024

Übung 4

- Balkenbiegung
 - Feste Einspannung
 - Loslager
 - Festlager
- Balkenbiegung unter Flächenlast

Übung 4: Balkenbiegung

Aufgabe: Balken auf Festlager und Loslager

Parameter:

F = 300 N

b = 40 mm

h = 10 mm

1 = 300 mm

Material: S235 JR

E-Modul: 210000 N/mm²

Übung 4: Balkenbiegung

Aufgabe: Balken auf Festlager und Loslager

Parameter:

F = 300 N

b = 40 mm

h = 10 mm

1 = 300 mm

Material: S235 JR

E-Modul: 210000 N/mm²

- Erzeugen Sie zunächst einen Balken wie gehabt mit einer festen Einspannung am linken Ende
- Erzeugen Sie nun ein Loslager in der Mitte des Balkens (Z-Richtung frei)
- Werten Sie Verschiebung und Spannung grafisch aus
- Gestalten Sie die Randbedingung der festen Einspannung so um, dass daraus ein **Festlager** wird (untere Kante fest in allen Richtungen)
- Werten Sie Verschiebung und Spannung grafisch aus
- Gestalten Sie zuletzt die Kraft an der rechten Kante in eine Flächenlast um

Vorgehen bei der FEM

CAD Konstruktion des Flachstabes

- Arbeitsverzeichnis => Ordner FEM
- Neues Teil: "Fachstab_Biegung"
- Skizze Profil
- Material zuweisen: S235 JR

Linie Oberseite

- Simulate schließen
- Creo aktivieren
- Skizze erstellen
- Linienkette einzeichnen
- 200 mm von Einspannung auf der Oberseite

Linie Unterseite

- Neue Skizze
- Referenzfläche: Unterseite
- Linienkette mittig einzeichnen, ausgerichtet an Referenzebenen

Simulate

=> Creo Simulate aufrufen

Randbedingung

- Am linken Balkenende:
 - => Feste Einspannung

Aufgeprägte Kraft

- An der Oberkante des rechten Balkenendes:
 - => Kante
 - => Kraft $F_y = -300 N$

Auflager

- Zusätzliche Randbedingung
 - => Auflager in der Mitte des Balkens
 - => Referenz: Linie Unterkante
 - => Loslager => Z-Richtung frei geben

Ergebnis mit fester Einspannung

- Starke Verformung am freien Balkenende
- Geringe Verformung durch feste Einspannung links

Ergebnis

Variation => Festlager statt fester Einspannung

Festlager

- Feste Einspannung entfernen
- Oder Eigenschaften ändern und umbenennen: "Festlager"
- Referenz: statt Fläche Kante wählen
- X, Y, Z-Richtung sperren (Translation)
- Rotation frei lassen

 Stärkere Verformung im linken Bereich durch erlaubte Drehung um Festlager

Ergebnis

Variation => Flächenbereich statt Linienkraft

Flächenbereich

- Modell verfeinern: Flächenbereich
- Obere Seite anwählen
- Durch zuvor gezeichnete Linie wird Bereich direkt erkannt
- Kraft löschen oder ändern
 - => "Kraft_Fläche"
- Referenz: Flächenbereich

Ergebnis Flächenlast

Viel Erfolg!

Hinweis

Diese Folien sind ausschließlich für den internen Gebrauch im Rahmen der Lehrveranstaltung an der Frankfurt University of Applied Sciences bestimmt. Sie sind nur zugänglich mit Hilfe eines Passwortes, dass in der Vorlesung bekannt gegeben wird.