Studiengang Mechatronik

Modul 16:

FEM – Finite Elemente Methode

- 3. Übung -

Prof. Dr. Enno Wagner

14. November 2024

Übung 3

- Gekerbter Flachstab auf Zug belastet
- Variation des numerischen Verfahrens
 - Anzahl Elemente
 - Variation des Polynomgrades (AEK, AMK)
- Variation der Kerbe (rund und spitz)

Übung 3a: rund gekerbter Flachstab

<u>Angaben</u>

Material: E-Modul: Kraft F:

s235jr (Baustahl) 210000 N/mm² 1000 N

Länge, l	100 mm
Höhe, h	20 mm
Breite, b	5 mm
Position Einkerbung	l/2 = 50 mm
Radius Kerbe, r	2 mm
Tiefe Kerbe, t	3 mm
Mittelpunkt Kerbe, m	1 mm

Übung 3b: spitz gekerbter Flachstab

<u>Angaben</u>

- Gleiches Material wie 3a
- Gleiche Abmessung wie 3a
- Gleiche Kräfte wie 3a

Variation 3b:

Spitze Kerbe (statt Rundung) Winkel: 90°

Tiefe Kerbe: 2 mm

Breite Kerbe: 4mm

a) Ermitteln Sie folgende Größen:

- Normalspannung in der Kerbe
- Von Mises Spannung σ_{v}
- Verschiebung
- Element-Anzahl (variieren)
- Polynomgrad
- Adaptive Einschritt-/Mehrschritt-Konvergenz
- CPU Rechenzeit

b) Führen Sie eine Konstruktions-Studie durch:

- Runde Kerbe (R=2 mm)
- Spitze Kerbe (2 mm, 90°)
- Nutzen Sie die Symmetrie!
- Stellen Sie die Ergebnisse in einer Tabelle gegenüber!
- Diskutieren Sie die Ergebnisse

FEM – Prof. Dr. Enno Wagner

CAD Konstruktion

CAD Konstruktion des Flachstabes

- Arbeitsverzeichnis => Ordner FEM
- Neues Teil: "Fachstab_Kerbe_rund"
- Skizze Profil
- Skizze Materialschnitt Kerbe
- Spiegeln
- Material zuweisen: S235 JR

Symmetrie nutzen

Symmetrische Randbedingungen

- Anzahl Elemente und CPU-Rechenzeit minimieren
- Systemaufwand reduzieren (Wegfall von Randbedingungen)
 Bedingungen
- Geometrie muss symmetrisch sein
- Randbedingungen müssen symmetrisch sein Vorgehen in Creo Part
- Anwählen einer Ebene, die Symmetrieebene ist
- Verbundvolumen
- die zu entfernende Hälfte wählen
 - => Ein Viertel für Berechnung verwenden!

=> Creo Simulate aufrufen

Lastbedingung

Last: Kraft auf Fläche

- Kraft/Moment anwählen
- Fläche rechts anwählen
- Kraft eingeben: Fz = 1000 N

Randbedingung

Weitere Randbedingung:

- Beschränkungen 1: Symmetrie (links)
- Beschränkung 2: Symmetrie (unten)
- Beschränkung 2: x-fest (oben)

Scripia	tte.prt.7 -	Creo Parametric E			
cht	Flexible Modellierung				
		Planar & Drehgelenk			
Vers	schiebung	🖎 Kugel			
	Beschränkungen 🔻				
	Symmetri	e			
	Randbedingungssätze				

	Symmetrie-Ran	dbe	dingung 🗙
Γ.	Name		
	Spiegeln_1		5
	Mitglied des Sa	atze	S
	Spiegeln		Neu
	Тур		
	Spiegeln		~
	Referenzen		
F	Punkte, Kanten, k	Curve	en, Flächen
	Fläche		
	OK	A	bbrechen

Netz erzeugen

p-Netz Erzeugen

- AutoGEM / Elementgröße
 - Auf Fläche (in Rundung)
 - Max. Größe eingeben (0.5 mm)

	AutoGEM-2	Zusammenfassung	×
zeugte El alken: reieck: ereck: etraeder: eil:	lemente: 0 0 0 352 0	Kante: Seitenfläche: FI-FI-Verbindung: Kante-FI-Verbind:	603 821 0 0
füllte Bec inkel (Gra in Kanten ax Seiten	dingungen: ad): nwinkel: 5. nverhältnis:	13 Max Kantenwinkel: 10.54	162.96
rstrichen	e Zeit: 0.00	min CPU-Zeit: 0.	02 min

Analyse

Statische Analyse

Analysen und Studien

111

- Startseite / Analysen und Studien
- Datei / Neue Statische Analyse
- Name: "Analyse_Flachstab gekerbt_rund" (Adaptive-Einschritt-Konvergenz)
- Analyse starten
- Studienstatus anzeigen

		Analysen und Kon	struktionsstudien	×
Datei	Editieren Rechen	lauf Informationen	Ergebnisse	
Analys	sen und Konstruktionsstu	🧾 📰 🛐 🕄 🕃 dien	1	
	Name	Тур	Status	
~	Analyse_Uebung1	Standard/Statisch	Abgeschlossen	
B	Arbeits- und Pl Rechnertyp: W RAM-Zuteilung	attenspeicher-Bele indows 64 für Gleichungslös	gung: er (MB): 512.0	
	Gesamte Verst Gesamt-CPU-Ze Max. Speicher Arbeitsverzei	richene zeit (Seku it (Sekunden): belegung (KB): 646 chnis-Plattenbeleg	nden): 1.95 1.51 088 ung (KB): 4096	
	Ergebnisverze 2502 .\Analys	ichnisgröße (kilob e_Uebung1	ytes):	chließen
	Rechenlauf abge Thu Oct 24, 201	schlossen 9 00:43:03		

Ergebnisse darstellen

Ergebnisse einer Studie öffnen

18		
ō	_	
÷0	-	
-0		1
10	_	

- Studie auswählen und anzeigen
- Größe: Spannung, von Mises
- Darstellungsoptionen:
 - Farbübergang
 - Verformt
 - Animieren

	Ergebnisfensterdefinition >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>			
Name	Titel			
Window1				
Studienauswa Konstruktionsst	ıhl	Analyse		
Analy	se_Uebung1	Analyse_Uebung1 🔹		
Darstellungst	ур			
Farbfläche		.		
Größe Dar	stellungsort Darste	ellungsoptionen		
 ✓ Farbüberg Legendenstufe Isolinie Beschriftu Isoflächer 	gang en <u>9 ×</u> Ing n	 Verformt Überlagern unverformt Transparente Überlagerung Skalierung 10		
	ОК	OK und anzeigen Abbrechen		

Graf anzeigen

Öffnen "Analyse_Flachstab_geker	bt_rund	lUebung2	<u>2</u> "	Name T Window2 Studienauswahl Konstruktionsstudie Analyse_Ueb
 Darstellungstyp: Graph 	Öffnen Aus Schablone öffnen	Standard Editieren	hließen le schließen bließen	Darstellungstyp Graph Größe Darstellung (Vertikale) Ordinater
 Von Mises Kurvenbogenlänge Entlang Kurve/Bohrung 	Window1" - Analyse_Uet Spannung Bild 12 von 12 (MPa) Verformt Skala 2.3793E+01 Lastsatz:LoadSet1 : F	 fb2-war Organisieren ~ III Ar Gemeinsame Ordner Desktop Eigene Dokumente fb2-wagner-y1 	gner-y1 ► Daten (D:) ► (sichten ➤) Werkzeuge Analyse_Uebung1 Analysis1 Analysis1_test_ew Analysis2	Spannung Komponente von Mises (Horizontale) Abszis Relativ zu Koordinate Komponente Z
				Ort des Graphen Kurve Nicht definie

	Studier	nauswahl					
K	onstruk	tionsstudie				/	Analyse
	6	Analyse_Uebung1					Analyse_Ue
	Darstel	llungstyp					
	Graph						
•	Größe	Darstellungsort	Darst	tellungsoptionen			
	(Vertik	ale) Ordinatenachse	darstel	len			
	Spann	ung	-	MPa			
	Kompoi	nente					
-	von M	ises					
R	(Horizo Relativ z	ontale) Abszissenach zu	nse graf	isch darstellen			
	Koord	inate			-	\searrow	₂,⊥× GKS
K	Compor	nente					
	Ζ				-		
	Ort de	s Graphen					
	Kurve						
		Nicht definiert					

Analyse der maximalen Spannung

Weitere Aufgaben:

- Vergleich von
 - Anzahl Elementen und Knoten
 - Polynomgrad
 - CPU-Zeit
- Vergleich AEK und AMK
- Für jede Rechnung maximale Spannung notieren
- Tabelle mit Ergebnissen erstellen

FE Methoden

Adaptive-Einschritt-Konvergenz

- Analyse / Eigenschaften
- Erweiterte Steuerungen verwenden:
 - Ziel f
 ür maximalen Spannungsfehler => 8%
 - Fläche Auswählen
 - Ziel f
 ür lokalen Spannungsfehler => 10%

Adaptive Einschritt-Konvergenz (E)

- Rechenlauf in 2 Schritten beginnend mit Polynomgrad 3
- Spannungsfehler werden berechnet
- anhand dieser Fehler erfolgt neue Polynomgradverteilung
- Die Methode ist empfehlenswert

<u>Vorteile:</u>

- höhere Geschwindigkeit, nur zwei Berechnungsschritte
- weniger Verbrauch von Plattenplatz
- Keine unnötigen Freiheitsgrade im Modell
- Direkte, auf die Spannung bezogene Fehlerabschätzung
- Spannungsberechnung auf zwei Arten
- Singularitäten treiben nicht den lokalen Polynomgrad

Nachteile:

- Keine Konvergenzkurve
- Keine Konvergenzvorgabe
- Fehlerwert schwierig zu interpretieren
- Spannungsbild oft zackig und ausgefranst, obwohl gute Ergebnisse
- Symmetrische Bauteile haben ein etwas unsymmetrisches Spannungsbild

FE Methoden

Polynomgrad AEK

- Max Polynomgrad = 7
- In nur zwei Schritten optimiert

FE Methoden

Adaptive Mehrfach-Konvergenz

- Creo 2.0 Simulate führt mehrere Rechenläufe durch
- jeweils Erhöhung des Polynomgrades bis max. 9.
- Konvergenzgrad wird angegeben (Ergebnisdifferenz zweier aufeinanderfolgender Rechenläufe in %).
- Der Konvergenzgrad wird vorgegeben; die Berechnung schließt ab, wenn der Vorgabewert erreicht ist!

Vorteile:

- Gemischte Modelle (Balken, Schalen, Tetraeder)
- Modelle mit isotropem Materialverhalten
- Angabe der Konvergenz

Polynomgrad AMK

- Maximaler Polynomgrad = 4
- Besser optimiert

Konstruktionsstudie

2. Bauteil mit spitzer Kerbe

\Rightarrow Netz-Generierung

⇒Elementgröße 0.5 mm

AutoGEM-Zusammenfassung	
rzeugte Elemente:	
Balken: 0 Kante: 872 Dreieck: 0 Seitenfläche: 1189 /iereck: 0 FI-FI-Verbindung: 0 etraeder: 509 Kante-FI-Verbind: 0 (eil: 0 0 Quader: 0 0 Früllte Bedingungen: Ninkel (Grad): 0 An Kantenwinkel: 5.18 Max Kantenwinkel: 156.17 Max Seitenverhältnis: 10.96	
/erstrichene Zeit: 0.02 min CPU-Zeit: 0.02 min	

Ergebnis Teil 2

Ergebnis Flachstahl mit spitzer Kerbe (AEK)

=> Warnung Streckgrenze überschritten !!

FEM – Prof. Dr. Enno Wagner

Ergebnis Teil 2

Ergebnis Flachstahl mit spitzer Kerbe (AMK)

=> Warnung Streckgrenze überschritten !!

FEM – Prof. Dr. Enno Wagner

Viel Erfolg !

Hinweis

Diese Folien sind ausschließlich für den internen Gebrauch im Rahmen der Lehrveranstaltung an der Frankfurt University of Applied Sciences bestimmt. Sie sind nur zugänglich mit Hilfe eines Passwortes, dass in der Vorlesung bekannt gegeben wird.