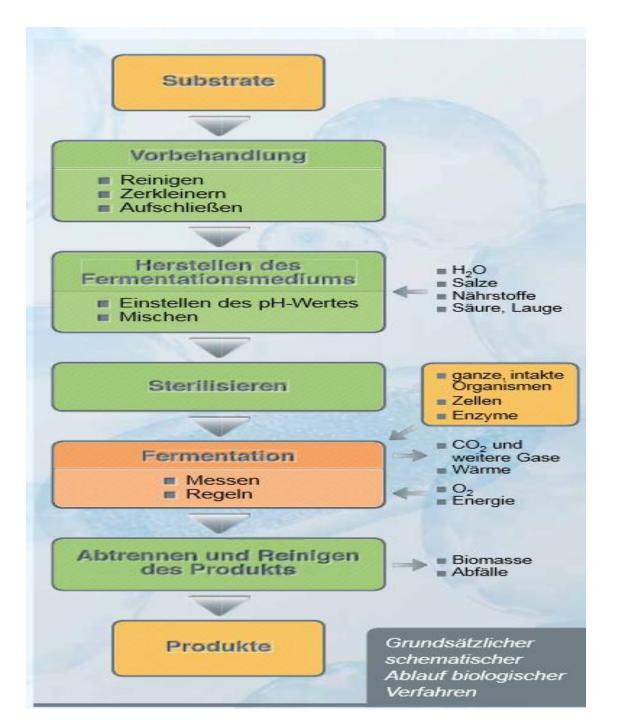


Einführung in die Bioverfahrenstechnik Fachbereich 2, Informatik und Ingenieurswissenschaften Studiengang Bioverfahrenstechnik


Prof. Dr. Ilona Brändlin ilona.braendlin@fb2.fra-uas.de

2

WS 2018 _ 2019 Prof. Dr. Ilona Brän

Prozessführung idealer Bioreaktoren

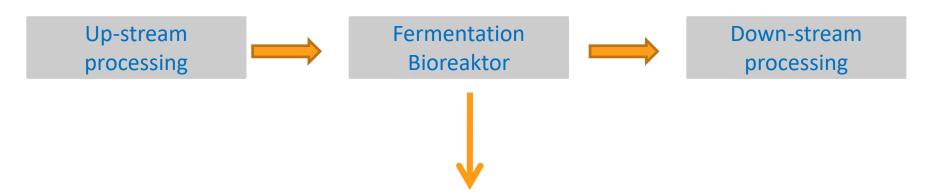
Übersicht-Einleitung

1. Parameter, welche die Prozess-Strategien beeinflussen

2. Parameter: Produkt – Prozess-Strategien

3. Charakterisierung der - Prozess-Strategien

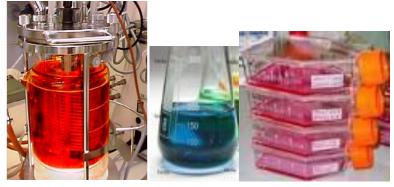
3.1 - batch

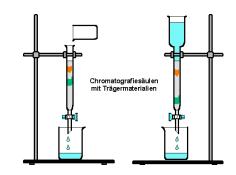

3.2 - fed-batch

3.3 - kontinuierliche Kultivierungen

4. Zusammenfassung: Vergleich - Prozess-Strategien

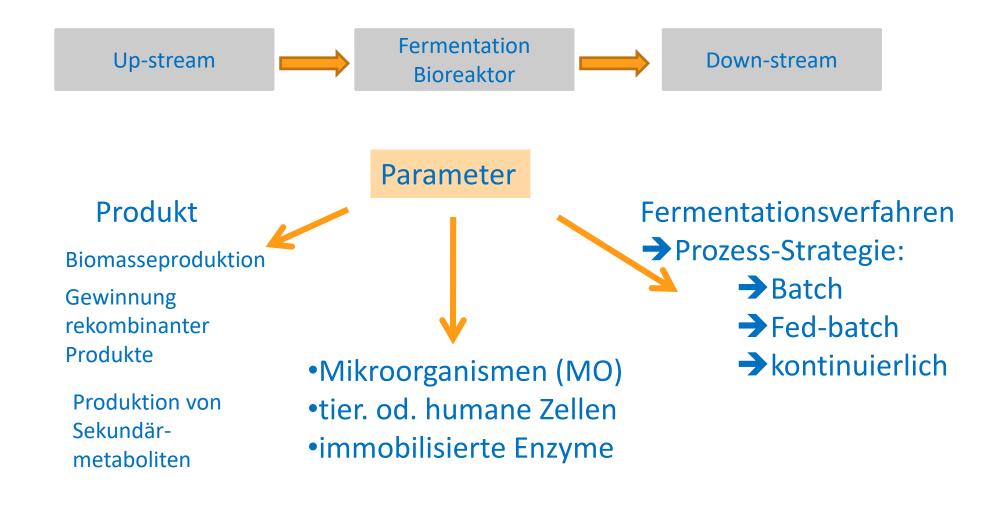
Betriebsweisen für Bioreaktoren





Escherichia coli

Fermentationsverfahren


→ Prozess-Strategie

Wahl des Kultivierungsmodus Prozess – Strategie i. d. Fermentation

Produktbildung nach Gaden

Fermentationsprodukte aufgeteilt in 3 Klassen (Gaden)

Typ 1: Produktbildung hängt direkt vom Substratverbrauch ab und ist ihm proportional

→ Glucose → Ethanol/Lactat

Typ 2: Produktbildung entsteht

indirekt aus dem

primären Energiestoffwechsel

Produktion, Substratverbrauch

und Zellwachstum sind indirekt

voneinander abhängig

→ Entstehung von Zitronensäure (Citrat)

Typ 3: Produktionsbildung hängt nicht direkt vom Substratverbrauch ab

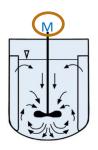
→ Produktion von Sekundärmetabolite aus einfachen Ausgangsstoffen

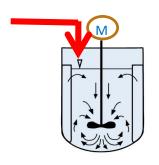
→ Unterscheidung zwischen einer Wachstumsphase und Produktionsphase

geringe Produktion

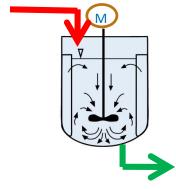
hohe Produktion

Betriebsweisen für Bioreaktoren

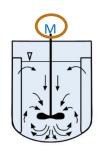

Parameter - Produkt


Produktbildungstypen nach Gaden (1959) mit Beispielen

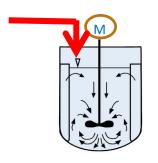
- direkte Abhängigkeit v. Substratverbrauch Typ I
 - → Primärmetabolite, Biomassse
- •indirekten Stoffwechselprodukten Typ II
 - → Gewinnung rekombinanten Proteinen (z.B. Biokatalysatoren)
- •Sekundärmetaboliten; keine Abhängigkeit vom Substratverbauch Typ III



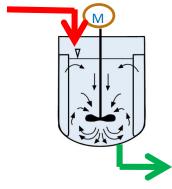
- 1. Teiloffene Systeme = Diskontinuierlich
 - Batch/ Satzbetrieb
 - Fed-Batch/ Zulaufsbetrieb



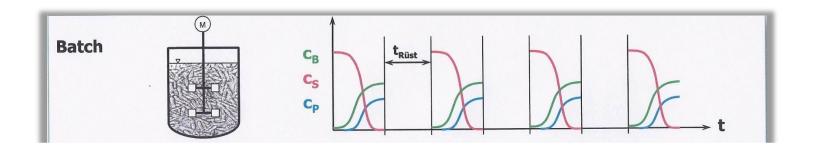
- 2. Offene Systeme = Kontinuierlich
 - Vollständige Rückvermischung
 - CSTR (Continuous Stirred Tank Reactor/ Durchflussreaktor
 - Chemostat
 - Turbidostat
 - Perfusion



- Keine Rückvermischung
 - Plug flow reactor (PFR)/ Strömungsrohrreaktor
 - Chemostat
 - Turbidostat
 - Perfusion

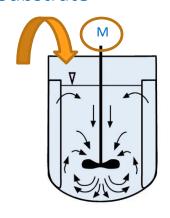


- 1. Teiloffene Systeme = Diskontinuierlich
 - Batch/ Satzbetrieb
 - Fed-Batch/ Zulaufsbetrieb



- 2. Offene Systeme = Kontinuierlich
 - Vollständige Rückvermischung
 - CSTR (Continuous Stirred Tank Reactor/ Durchflussreaktor
 - Chemostat
 - Turbidostat
 - Perfusion

- Keine Rückvermischung
 - Plug flow reactor (PFR)/ Strömungsrohrreaktor
 - Chemostat
 - Turbidostat
 - Perfusion



batch - Fermentation

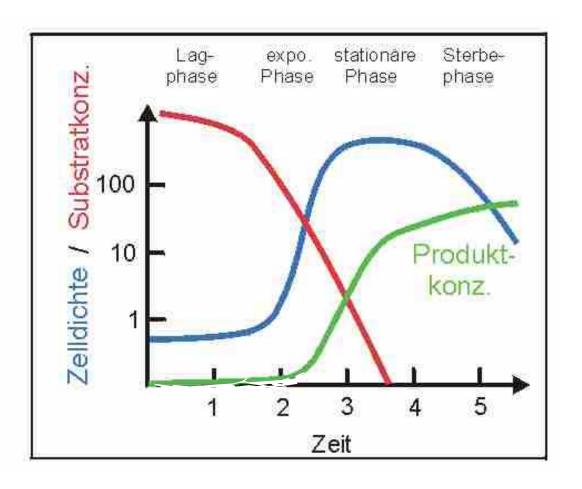
Inokulum Substrate

Volumen im Reaktor (V) = konstant

- Einmalige Zugabe des Substrates
- Einmalige Zugabe des Inokulums
- → Prozess wird gestartet
 - → Umwandlung des Substrats während der Kultivierung in
 - → Biomasse
 - → Produkt

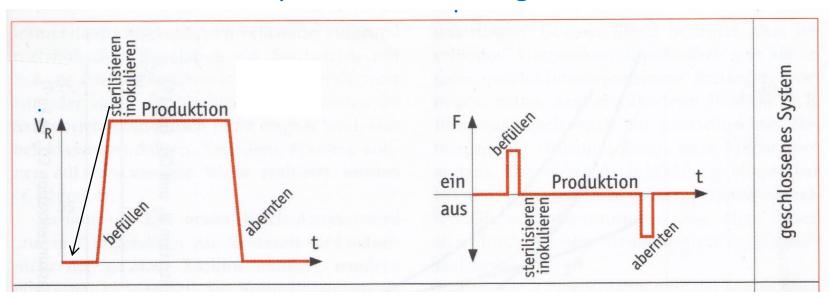
Ende des Prozesses


- → vollständigem Verbrauch der Substrate
- → Inhibitionen
- → max. erreichbare Produktkonzentration


Zugabe von

- \rightarrow Luft/O₂/CO₂
- → Säuren/Laugen
- → Antischaummittel

Substratkonzentration/ Zelldichte: batch



Produktbildung: batch

Systembeschreibung

 \dot{V}_R = zeitliches Reaktionsvolumen t = Zeit VF = Volumenstrom

F in das System hinein: positiv F aus dem System heraus: negativ

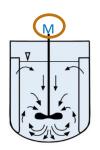
Batch-Betrieb Zusammenfassung

Einfach

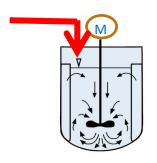
Zuverlässig

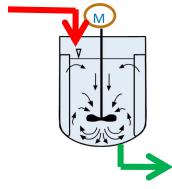
In der industriellen Praxis weit verbreitet

Volumenspezifische Produktbildungsrate

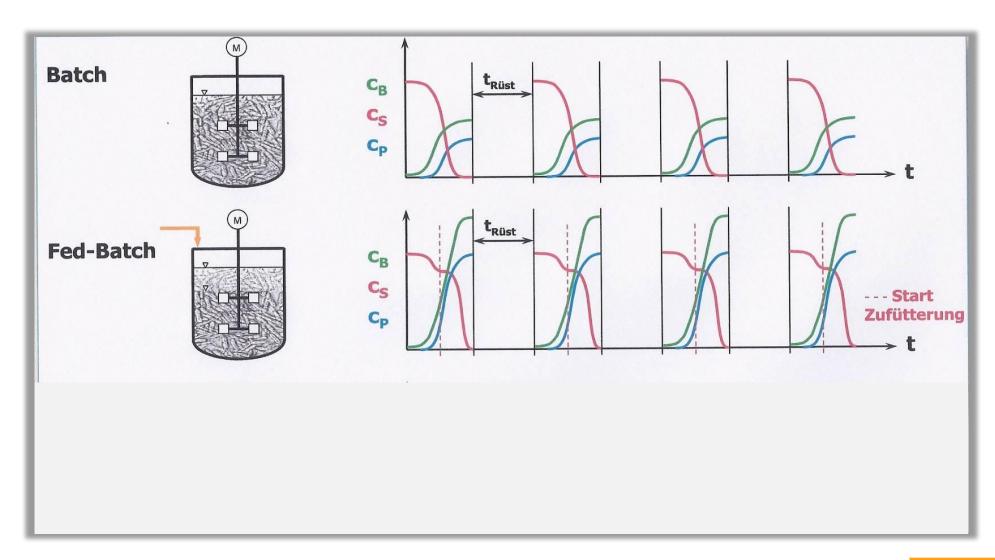

- Kurzer Zeitraum
 - Zum Ende der Fermentation, bei hohen Zelldichten
 - Lange Anwachsphase

Produktivität wird beeinflusst durch


- Anfangskonzentration der Substrate
 - Substratüberschussinhibierung
 - Erhöhte Produktion an inhibierenden Metaboliten

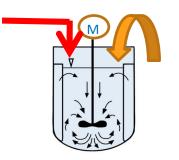


- 1. Teiloffene Systeme = Diskontinuierlich
 - Batch/ Satzbetrieb
 - Fed-Batch/ Zulaufbetrieb



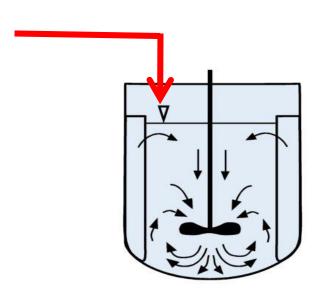
- 2. Offene Systeme = Kontinuierlich
 - Vollständige Rückvermischung
 - CSTR (Continuous Stirred Tank Reactor/ Durchflussreaktor
 - Chemostat
 - Turbidostat
 - Perfusion

- Keine Rückvermischung
 - Plug flow reactor (PFR)/ Strömungsrohrreaktor
 - Chemostat
 - Turbidostat
 - Perfusion



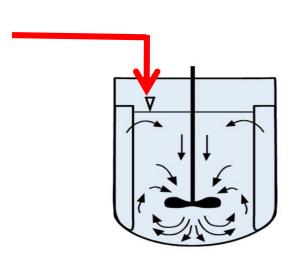
2.Teiloffene Systeme (Zulaufverfahren, "fed-batch")

Inokulum

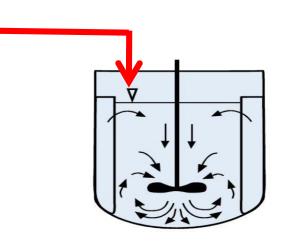


= <u>Diskontinuierliches</u> System

- Einmalige Zugabe des Inokulums
- Substrat kann kontinuierlich oder schrittweise zugeführt werden
- Produktbildung im System
- Volumen im Reaktor (V)= <u>nicht konstant</u>

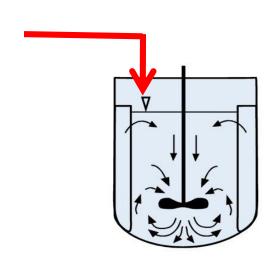

Anwendung

- → wenn hohe Anfangskonzentrationen an Substraten auf Grund metabolischer Regulationen unerwünscht sind (Crabtree-Effekt)
- → bei <u>Massenproduktionen</u>
 - Überwindung der Wachstumslimitierung durch Substratlimitierung

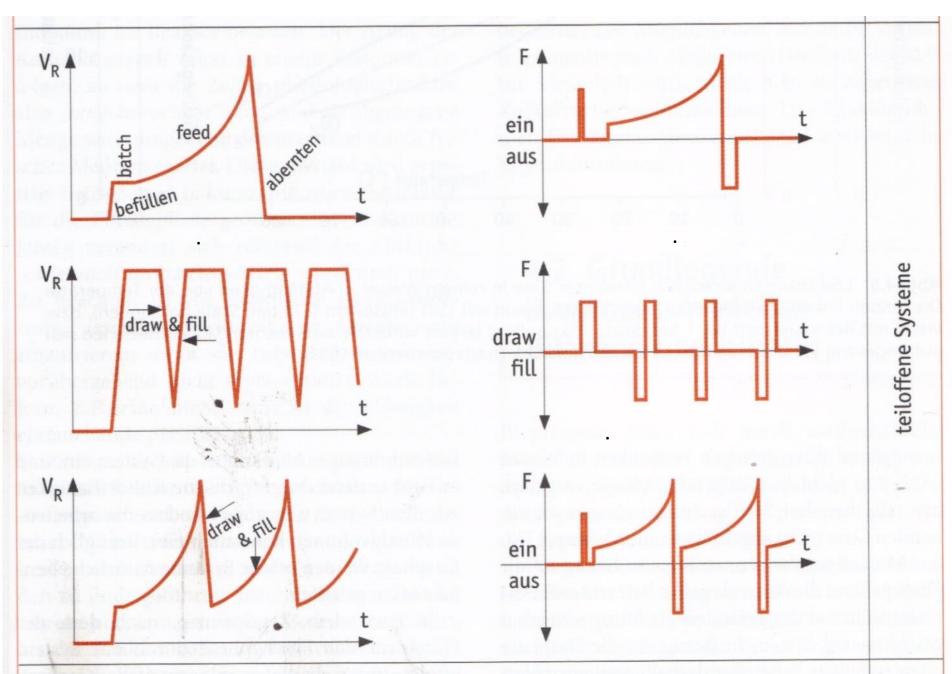


2.Teiloffene Systeme (Zulaufverfahren "fed-batch")

- → <u>Start mit einem Teil des Reaktorvolumens (batch)</u> danach Zufütterung bis zum max. Volumen
- sehr konzentrierte Medienbestandteilen möglich
 - → Niedrighalten der Konzentration von Substratkomponenten, wenn diese einen Einfluss auf Wachstum oder Produktion haben (Inhibierung/Crabtree-Effekt)

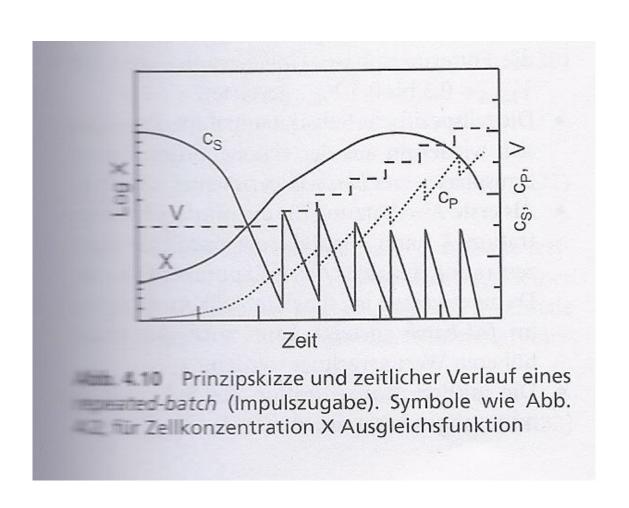


- → 1. normaler "batch"- Ansatz wird angefahren, zur Ernte der Produkte wird jedoch nicht der ganze Reaktor geleert – kleiner Teil bleibt als Inokulum im Reaktor. Die Kulturflüssigkeit wird entzogen und durch neue Medien ersetzt werden = repetetives System
 - → kurzeitig, regelmäßig wird das System geöffnet, jedoch so, dass der Flüssigkeitsstand im Reaktor immer gleich bleibt (pH-Elektrode!!!)


2.Teiloffene Systeme (Zulaufverfahren "fed-batch")

→ 2. Start mit 20% des Reaktorvolumens

bis kurz vor dem Ende der Produktiondanach Zuführung
sehr konzentrierten Medienbestandteilen möglich

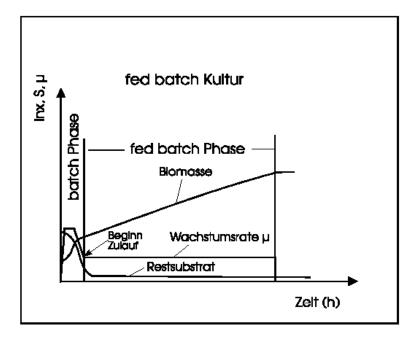

→ Niedrighaltend der Konzentration von Substraten, wenn diese einen Einfluss auf Wachstum oder Produktion haben (Glucose-Effekt)

Systembeschreibung -> repetetives Zulaufverfahren

X = Biomassenkonzentration

C_s= Substratkonzentration

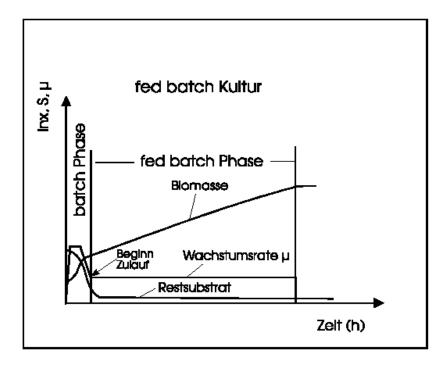
C_p=Produkt-Metabolitenkonzentration


V = Volumen

Varianten der fed-batch Steuerung nach Krahe (2003)

Zur Einstellung einer konstanten Wachstumsrate muss die vorgegebene Menge an Substrat exponentiell ansteigen

Verlauf einer fed batch Kultur


Prozess muss oft unter Substratlimitierung gefahren werden

→ Unterdrückung limitierender Metaboliten, d.h. zu gefütterte Menge an Substrat sollte unterhalb der max. umsetzbaren Menge bleiben

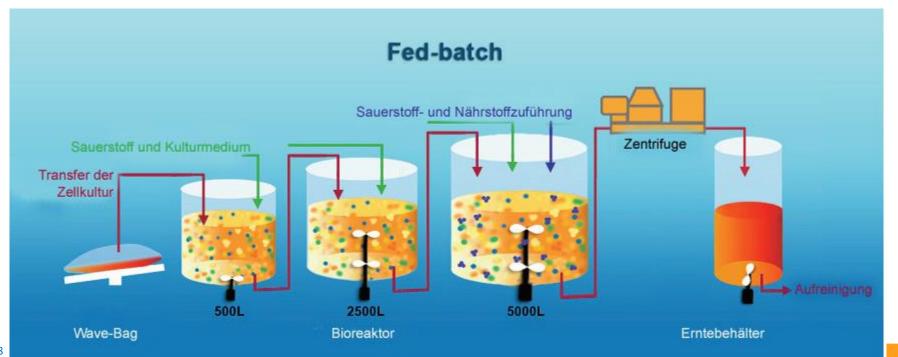
Varianten der fed-batch Steuerung nach Krahe (2003)

Verlauf einer fed batch Kultur

Sauerstoffkonzentration als Indikator für Substratlimitierung

- → Hoher schneller Anstieg der O₂-Konz.
 - = Substratlimitierung
- → Verzögerter Anstieg der O₂-Konz.
 - = es war noch Substrat vorhanden

Vermutung: MOs benötigen Sauerstoff, ist der Sauerstoff schnell angestiegen, weniger MOs, da weniger Wachstum durch nicht vorhandenes Substrat


Anwendungsbeispiel: rekombinante Proteinproduktion

Der Bioreaktor ist eine optimale Umgebung für die Produktion von Protein aus Zellkulturen

krankheitsmodifizierendes Medikament zur Behandlung von schubförmig verlaufenden Formen der Multiplen Sklerose→ Rebif® - Interferon-beta-1a-Protein

Merck Serono Biotech Center (MSBC)

Probleme der fed-batch Steuerung

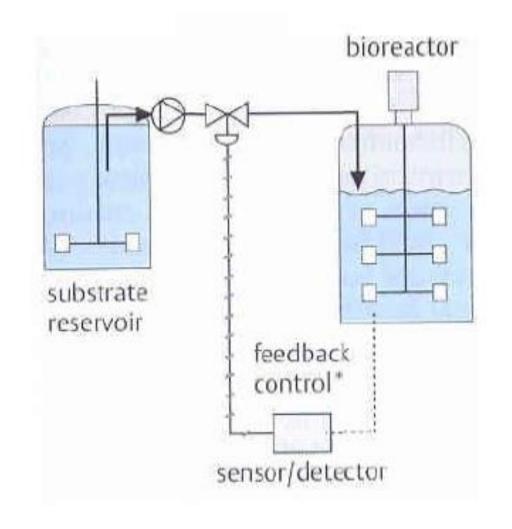
- -In der exponentiellen Wachstumsphase steigt nicht nur der Bedarf an Substraten, sondern auch von Sauerstoff
- Gefahr der Sauerstofflimitierung-
- -Auftreten von Veränderungen im Metabolismus während der oder zwischen aufeinanderfolgenden Kultivierung/en
- -Bildung und Anreicherung inhibierender Metaboliten durch Fütterung mit konzentrierten Substratlösungen

Anreicherung von

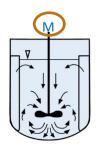
→ Ethanol: bei Hefen

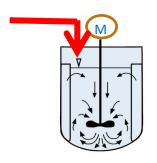
→ Acetat: bei MOs

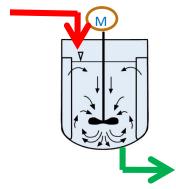
→ Lactat und Ammonium: tierische/humane Zellen


Limitierte online-Messgrößen stehen zur Verfügung

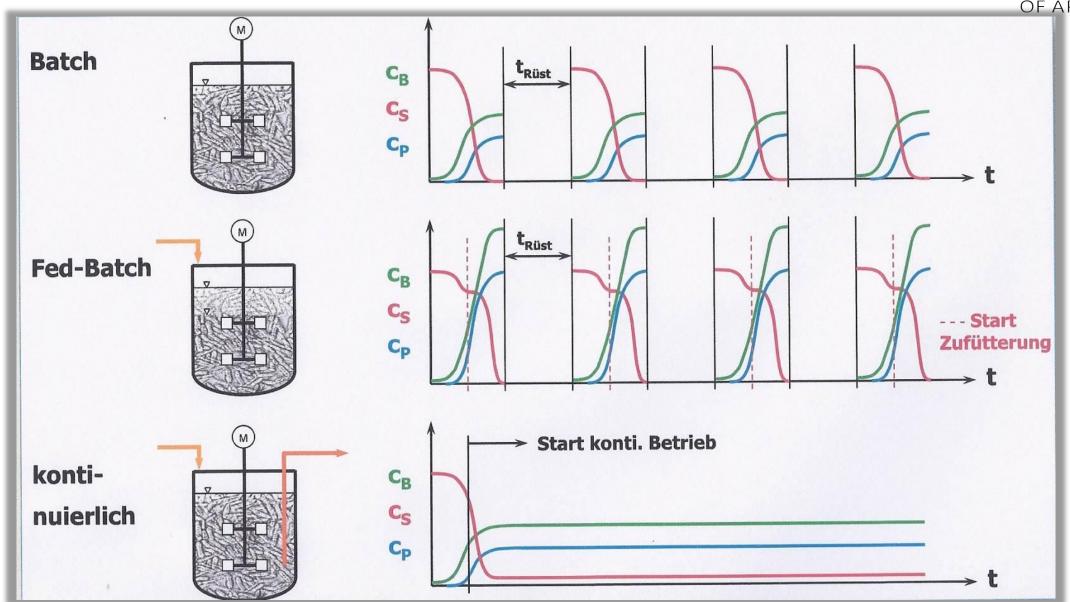
- → Erschwerung der Konzeption der Mess-und Regeltechnik
- → Gefahr der Apoptose durch Substratlimitierung oder Metabolt-Inhibierung


fed-batch – Fermentation Zusammenfassung


- Kontinuierliche Nährstoffzufuhr ist gewährleistet
- Substratinhibierung ausgeschlossen
- •Höhere Konzentrationen an Biomasse/Produkt
- Regulation der Wachstumsrate
- •geringere Akkumulation von toxische Metaboliten
- Reaktorvolumen begrenzt die Kultivierungsdauer
- Einfache Prozesssteuerung
- "Geringer" technischer Aufwand

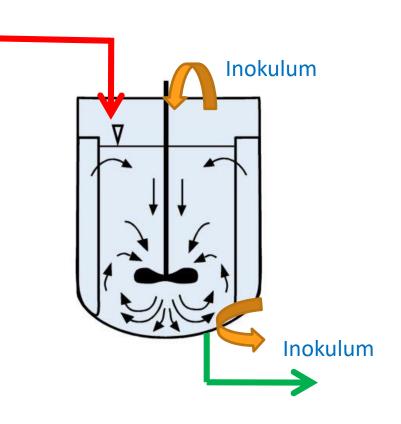


- 1. Teiloffene Systeme = Diskontinuierlich
 - Batch/ Satzbetrieb
 - Fed-Batch/ Zulaufbetrieb



- 2. Offene Systeme = Kontinuierlich
 - Vollständige Rückvermischung
 - CSTR (Continuous Stirred Tank Reactor/ Durchflussreaktor
 - Chemostat
 - Turbidostat
 - Perfusion

- Keine Rückvermischung
 - Plug flow reactor (PFR)/ Strömungsrohrreaktor
 - Chemostat
 - Turbidostat
 - Perfusion

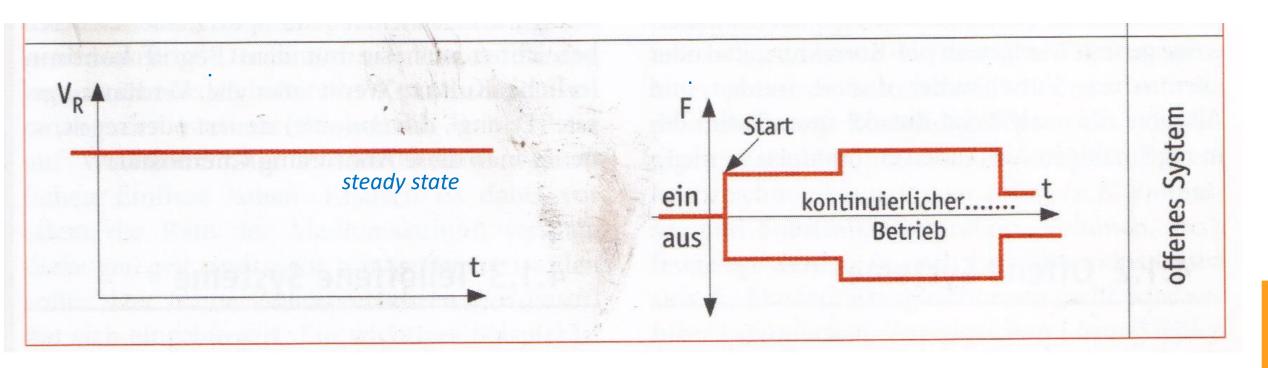

FRANKFURT UNIVERSITY OF APPLIED SCIENCES

kontinuierliche- Fermentation

3.Offene Systeme (kontinuierliche Systeme)

- → System ist ständig offen
 - → Substrat (und Inokulum) wird zugeführt
 - → Produkt (und Inokulum) wird abgeführt
 - der Volumenstand im Reaktor bleibt konstant V = const.,
 - → steady-state Phase, Fließgleichgewicht

Produktbildung kontinuierlich

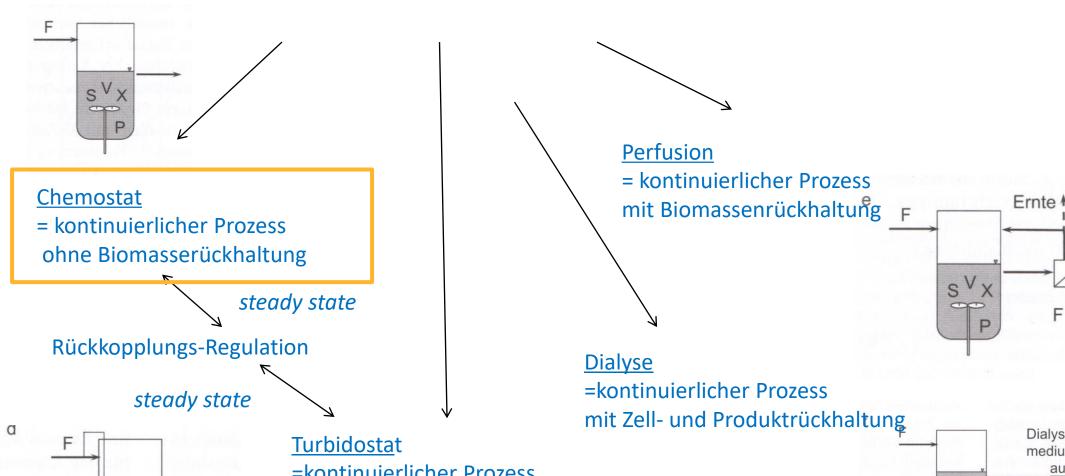


Systembeschreibung

Offenes System

→ Chemostat

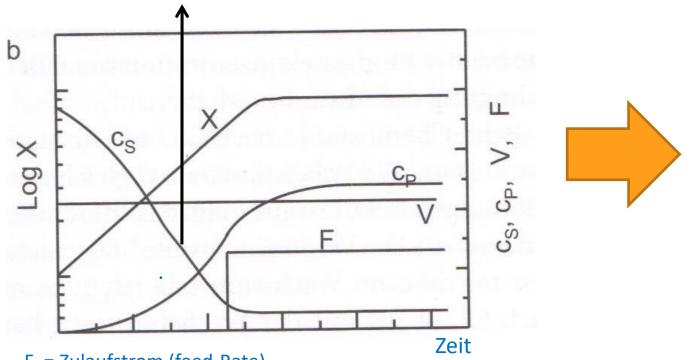
→ Perfusion



Y_R = zeitliches Reaktionsvolument = Zeit

F in das System hin<u>ein</u>: positiv F aus dem System her<u>aus</u>: negativ

kontinuierlich – Fermentation

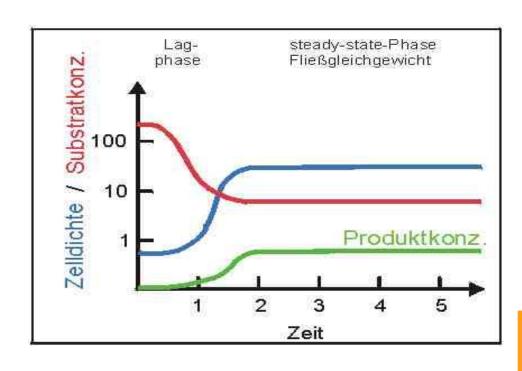

Mess-sonde für Biomasse

=kontinuierlicher Prozess ohne Biomassenrückhaltung, mit Regelung der Biomassenkonzentration

- konstante Trübung, konstante Zellmasse
- variabler Zufluss von Nährlösung

Chemostat- kontinuierliche Fermentation

= ohne Biomasserückhaltung, variable Entnahme APPLIED SCIENCES von Zellmasse und Produkt


F = Zulaufstrom (feed-Rate)

X = Biomassenkonzentration

V = Reaktionsvolumen

C_s= Substratkonzentration

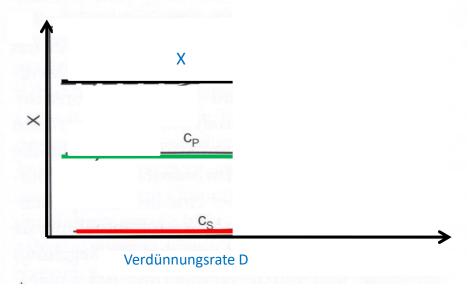
C_p=Produkt-Metabolitenkonzentration

Geregelte Zu-/Ablaufrate (F) =Verdünnungsrate D

Chemostat – Verdünnungsrate D

Verdünnungsrate D = F (feed-rate Zulauf) V (Volumen im Reaktor)

D = Verdünnungsrate [h-1]


F = Zufluss [I/h]

V = Reaktionsvolumen

X = Biomassenkonzentration

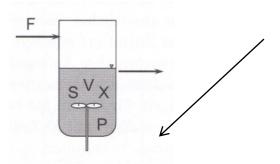
C_s = Substratkonzentration

C_p= Produkt-Metabolitenkonznetration

- -niedere Verdünnungsraten → konstante Biomassenkonzentration
- -hohe Verdünnungsraten → Abnahme der Biomassenkonzentration im *steady-state*-Auswaschrate: kritische Verdünnungsrate Dkrit
 tierische, humane Zellen= Absterbe Verhalten

Chemostat: Anwendung

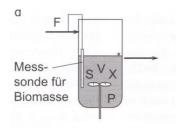
Hager + Elsässer GmbH


- 1. in der aeroben Abwasserreinigung
- 2. Biogasanlagen

Einschränkungen der Anwendung:

- max. zu erwartende Biomassenkonzentration (X) gering
- keine Produktion von Sekundärmetaboliten
- erhöhter Installationsaufwand
- erhöhter Aufwand an Steriltechniken

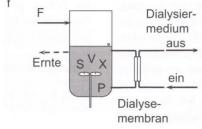
Kontinuierliche Prozesse



Chemostat

= kontinuierlicher Prozess ohne Biomasserückhaltung

steady state
Rückkopplungs-Regulation
steady state



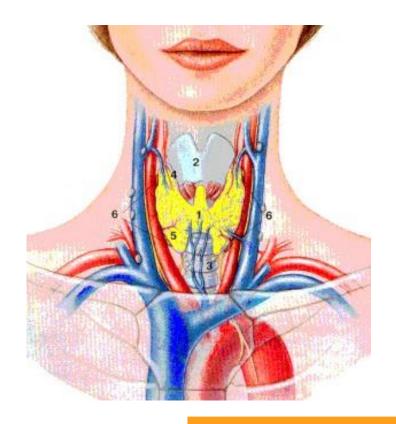
Turbidostat

=kontinuierlicher Prozess ohne Biomassenrückhaltung, mit Regelung der Biomassenkonzentration

- konstante Trübung, konstante Zellmasse
- variabler Zufluss von Nährlösung

Perfusion

= kontinuierlicher Prozess mit Biomassenrückhaltung


Vorteil:

- -Größere Ausbeuten an Biomasse
- Produktion und Gewinnung von Sekundärmetaboliten ist möglich

Anwendung in den industriellen Prozessen:

- Produktion von Wirkstoffen mit tierischen Zellen
 - -Wachstumshormone
 - rekombinante Proteine

- regenerative Medizin, Tissue engineering

IGB

Anwendungsbeispiel: Regenerative Medizin

Vaskularisierte Matrix im Bioreaktor

Anschluss zur Perfusion der vaskularen Strukturen über einen seitlichen Kreislauf kann Medium zugeführt werden.

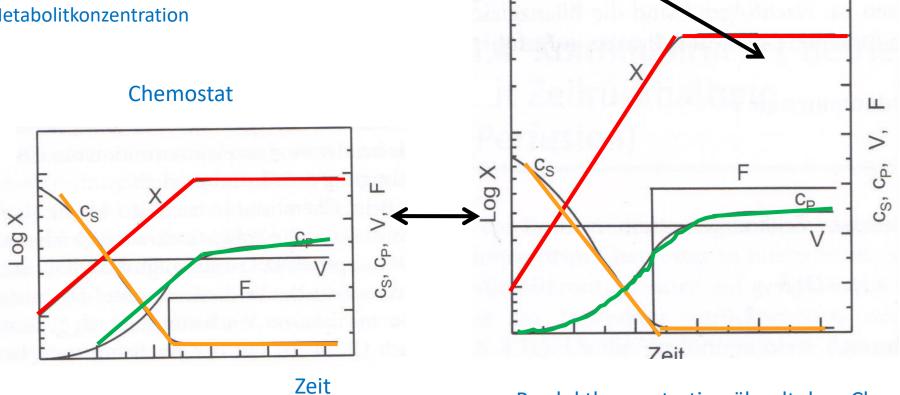
Ein durchgängiges, artifizielles Blutsystem verbessert

- die Zufuhr von Nährstoffen
- den Gasaustausch sowie
- den Abtransport von Stoffwechselprodukten

Perfusion

FRANKFURT OF APPLIED SCIENCES

F= Zulaufstrom (feed-Rate)


X= Zellkonzentration

V= Volumen

Cs= Substratkonzentration

Cp=produkt-Metabolitkonzentration

= kontinuierlicher Prozess mit Biomassenrückhaltung

Produktkonzentration ähnelt dem Chemostat

Betriebsart	Vorteile	Nachteile
Batch (Satzbetrieb) → Anwendung: Labor	 hohe Flexibilität niedere Investionskosten, da geringer Regelaufwand 	 -diskontinuierlich -hohe Lohnkosten durch höheren Personalaufwand zeitl. Schwankungen aller Größen -Hohe Substratkonzentrationen
 Fed-batch (Zulaufbetrieb) → Anwendung: Biomassenproduktion rekombinante Proteine 	 höchste Raum-Zeit Ausbeute weitgehende Automatisierung geringe Lohnkosten gleichbleibende Produktqualität 	hohe Investitionskostenhoher RegelaufwandhoheSubstratkonzentrationen
 ★Anwendung: - Umwelttechnik - Pharmaka (Insulin; Novo Nordisk) - Tissue - engineering 	 einfachere Automatisierung geringe Lohnkosten, kürzere Rüstzeiten gleichbleibende Produktqualität bei wachstumsabhängiger Produktion 	 -Geringe Flexibilität - hohe Investitionskosten - hoher Regelaufwand - Sterilität - Mutationsgefahr – Plasmid Verlust - > als 500h - wirtschaftlich

