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Market turbulence
June 2019

• On 6, 12 and 25 June 2019 balancing energy was not sufficient
• uncertainties in the weather forecast on 6 and 12 June
• prices for electricity at the intraday market higher than prices for

electricity at the balancing market

Figure: Deviation of electricity supply and demand in an exemplary balancing group; source: 50hertz, Amprion, Tennet,
TransnetBW (2019), Investigation on system imbalances in June 2019.
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Final changes in the auction design

• 22 July 2019: decision of the Higher Regional Court (OLG)
Düsseldorf: “mixed bid auction” with constant weighting factor
is unlawful

⇒ back to the 2017 system with price limit of 9,999.99 e
• 2 November 2020: placing a bid for balancing energy without

successful capacity bid possible; price limit 99,999.99 e
⇒ hope: higher competition
• 16 December 2020: introduction of a price limit of 9,999.99 e
⇒ Legal action before the Higher Regional Court Düsseldorf
⇒ further integration into a European market...
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Exercise

• Calculate the weighting factor for 2019 for ten deciles and
illustrate them.

• Assume a price of 77,777 e/MWh for the last decile:
• Calculate the expectation value of the price using the

weighting factor of the last decile.
• Calculate the respective price for all deciles assuming the

expectation value calculated in the previous task.
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Effect of design changes on the auction design
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Figure: Schematic illustration of the merit order of bids for electricity delivery (green) in the balancing market with bids
for capacity (red); own illustration.
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Effect of design changes on the auction design
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Figure: Schematic illustration of the changed merit order of bids for electricity delivery (green) in the balancing market
with bids for capacity (red); own illustration.
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Electricity flow from aFRR and mFRR in Germany
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Figure: Development of the electricity flow from aFRR and mFRR in Germany between 2010 and 2021; own illustration
based on www.smard.de, Bundesnetzagentur and Bundeskartellamt, Monitoringberichte 2012 – 2016.
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Optimal consumption

• budget constraint m = x1p1 + x2p2

• utility function u = f (x1, x2)
→ marginal utility (MU)

MU1 := ∂u
∂x1

MU2 := ∂u
∂x2

→ marginal rate of substitution (MRS)

MRS1,2 := MU1
MU2

= −∂x2
∂x1
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Optimal production

• cost function C = x1w1 + x2w2

• production function y = f (x1, x2)
→ marginal product (MP)

MP1 := ∂y
∂x1

MP2 := ∂y
∂x2

→ technical rate of substitution (TRS)

TRS1,2 := MP1
MP2

= −∂x2
∂x1
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Cobb-Douglas preferences
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Aggregated demand curve
The aggregated demand at a market, thus also called markt demand
of n consumers is given by

X1(p, m1, . . . , mn) =
n∑

i=1
x i

1(p1, p2, mi)
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Price elasticity of demand

εp =
∣∣∣∣% change of demand

% change of prices

∣∣∣∣ = − ∆x/x
∆p/p = ∆x

∆p
p
x

or for a continuously differentiable demand function

εp = − d D(p)
dp · p

D(p)

• Since the demand for normal goods decreases with increasing
prices, the slope (respectively the derivative d D(p)/dp) is
always negative. By definition this compensated by a minus.
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Elasticity of demand along the price curve
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The elasticity of demand changes along the demand curve although
the slope is constant. It varies between ε = 0 (for p = 0) and ε = ∞
(for D(p) = 0).
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Constant elasticity of demand
Price elasticity along the following curve is constant.

0

0,5

1

1,5

2

2,5

3

3,5

4

0 10 20 30 40 50

p

D(p)

constant elsaticity

D(p) = Ap−ϵ

• high price (low demand) is compensated by a small D′(p).
• high value for D′(p) compensates a low price with high demand.
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Economies of scale

The effect of a simultaneous increase of all input factors is measured
by the so-called economies of scale
If all input factors are increased by a factor t > 1, we face
constant economies of scale if the output equals the original

output multiplied with t, f (tx1, tx2) = tf (x1, x2)
increasing economies of scale if the output increases to more than

the original output multiplied with t f (tx1, tx2) > tf (x1, x2)
decreasing economies os scale if the output increases to less than

the original output multiplied with t f (tx1, tx2) < tf (x1, x2)

page 15 Summary Sebastian Schäfer February 8, 2024



Minimizing costs

optimum condition of minimal cost
For a given output level we are searching for the lowest cost level
→ tangent point of isocost line and production isoquant
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Cost, profit, producer surplus
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Supply of a company

profit maximization by quantity management

For a company acting as price taker (perfect competition) we find
the following objective function

max
y

Π = p y − C(y)

→ decisive variable: output y

• first order condition (FOC) for profit maximization

∂Π(y)
∂y = 0 ↪→ p − ∂C(y)

∂y = 0 ↪→ p = MC
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Supply of a company

profit maximization by quantity management

For a company acting as monopolist we find the following objective
function

max
y

Π = p(y) y − C(y)

→ decisive variable: output y

• first order condition (FOC) for profit maximization

∂Π(y)
∂y = 0 ↪→ ∂p(y)

∂y + p(y) = ∂C(y)
∂y ↪→ MR = MC
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Welfare
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Equilibrium and taxes
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Taxes and welfare
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Inefficiency of a monopoly
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Gas price cap – calculations

• insert the known prices of 50 and 300 e/MWh into the demand
function

950 = A50ϵ

710 = A300ϵ

• division of first equation by the second yields

950
710 = 50ϵ

300ϵ

⇔
ln

(950
710

)
= ϵ ln

( 50
300

)
⇔ ϵ ≈ 0.1625
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Main result of the paper

 

13 
 

loss from a unit of load declines as the gap between value of lost load and price declines. The results 

show that in the case of a supply interruption it is welfare enhancing for Europe to curtail some 

demand and pay for the remaining demand a very high price in order to avoid extremely high prices 

paid for all demand, even when the supply intervention is very large.  

If on top of the price-based response, governments implement gas saving targets and programs 

domestically and in international cooperation, then the costs of unserved load will be lower than 

depicted in the scenarios below. Social campaigns for joint gas savings may be more successful, if 

customers understand that they serve to avoid extremely high prices and associated negative 

impacts for households and industry (Ziervogel 2019; Kimura and Nishio 2016).  

 

Figure 5. Costs to EU consumers after a supply interruption. Costs decline with the reduction of 

purchasing costs from a price limit. This result holds, even if EU fails to agree cooperation agreements 

with Asian buyers to jointly pursue gas saving programs and hence would have to curtail some 

demand. (It assumes EU demand response through government programs) [Fig. corrected July 2022] 

Anticipation of gas-price limit in security of supply case already reduces costs today 
In the recent months, gas supply to the EU has been high enough to refill storage sites to levels 

typical for this period of the year (Zachmann, Sgaravatti and McWilliams 2022) and the global supply-

demand situation is no longer exceptional. Without concerns about a potential large-scale gas-supply 

interruption, gas prices should hence returned to levels below historic price hikes. Current gas price 

levels can be explained by a risk premium reflecting the expectation of a potential supply 

interruption and the resulting extremely high prices.  

In a simplified calculation, we assume a gas price equilibrium without a risk of supply interruptions 

(e.g., if Russia and Ukraine would sign a peace deal tomorrow) at the level of 30 Euro/MWh. After a 

large-scale supply interruption, this price level is assumed to increase to 300 Euro/MWh. If market 

participants anticipate such an interruption with a likelihood of 25%, then risk-neutral pricing would 

suggest forward prices of about 100 Euro/MWh. A reduction (increase) of the anticipated likelihood 

of an interruption will – in this model – directly result in a reduction (increase) of gas prices both in 

spot and forward markets.  

Figure 6 illustrates how the level of the anticipated price limit would impact the forward price if 

market participants have confidence in a pre-defined price limit which would kick in after a supply 

interruption. Interestingly enough, within a week of the publication of the EU Communication on 
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Figure: Cost to EU consumers after a supply interruption of Russian gas; source: Neuhoff (2022).
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Development of gas prices

source:	tradingeconomics.com
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Figure: Price evolution for TTF gas from January 1, 2022 until January 6, 2023; source: tradingeconomics.com (2023).
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Electricity generation in Germany
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Figure: Total net electricity generation in Germany in December 2022 (energetically corrected values); source:
Energy-Charts (2023).
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Oil price cap game revisited

Impact on payouts in a more general form

Russia
not accept accept

EU+G7+Australia draw back (<-d?; 0) (–; –)
hold out (-d>-c; -c<-b) (a; -b)

with c > b and c > d
payoffs Π: (ΠEU+G7+Australia;ΠRussia)

⇒ Minister for foreign affairs of Estonia demands a reduction of a
cap on January 5, 2023
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Development of price ratio
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Figure: Evolution of the ratio of spot prices for Urals and Brent Crude Oil from January 1, 2022 until January 6, 2023;
own illustration using data from investing.com (2023).
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Model system with different power plants

Figure: Model system with an optimal power plant mix resulting from total costs; taken with adjustments from
Schwintowski et al. (2021).
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Spot market

• day ahead (auction), intraday (continuously)
• price range -1000 e – 3000 e

Figure: Exemplary bid at the day ahead market skipping negative prices; taken with adjustments from Schwintowski
et al. (2021).
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Electricity market equilibrium

Assume a perfect electricity market
• optimal power plant mix
• scarcity pricing exactly covers fixed cost of all power plant

operators
⇒ equilibrium

Now demand increases by 10 % (shifting the load curve)
• scarcity rent (also called peak energy rent – PER) increases
• revenue for all power plant operators increases to the same

extent since all power plants are running in an event of scarcity
⇒ a profit occurs
⇒ incentive for investments into all types of power plants
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Electricity market equilibrium

Now demand increases by another 1 GW every hour
• scarcity rent increases more
• revenue for all power plant operators increases since all power

plants are running in an event of scarcity
⇒ a higher profit occurs for base-load power plants
⇒ investments are incentivized particularly for base-load power

plants
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Example for a futures contract

Figure: future and spot market results for the can manufacturer; taken with adjustments from Schwintowski et al.
(2021).
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Electricity supply and futures markets

Figure: Schematic illustration for the impact of the future market on the spot market for electricity; taken with
adjustments from Schwintowski et al. (2021).
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Multi unit bidders
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Figure: Schematic illustration of the merit order after capacity of two power plants is withdrawn.
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Merit order effect of RES
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Figure: Schematic illustration of the merit order effect of RES as described by De Miera et al. (2008); Sensfuß et al.
(2008); own illustration.
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The missing money problem
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Figure: Schematic illustration of the merit with price cap and potential missing money (MM).
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Capacity market equations

• rational equilibrium price assuming truthful bidding

p∗
t = pt(

m∑
i=1

Ct,i) = kt,m + X e
PER,t,mPERe

t − (1 − X e
IR,t,m)IRe

t,m + ϱe
t,m

• the annual capital decrease equals the revenue of the power
plant including MM, if occurring

kt,i = (1 − X e
IR,t,i)IRe

t,i + (1 − X e
PER,t,i)PERe

t + (1 − X e
PER,t,i)MMe

t

• as penalty and penalty factor we receive

ϱe
t,i = X e

PER,t,iMMe
t ⇒ ξt := p∗

t
PERe

t
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Capacity market equilibrium

• difference between price bids of power plants i and j

∆pt,j−i : = pt,j − pt,i

= ∆kt,j−i + ∆X e
PER,tPERe

t + ∆ϱe
t + (1 − X e

IR,t,i )IRe
t,i − (1 − X e

IR,t,j)IRe
t,j

= ∆ϱe
t − ∆X e

PER,tMMe
t

= 0.

⇒ zero arbitrage principle
⇒ in the equilibrium all bids at the capacity market are identical!
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Merit order effect and capacity market

• the impact of an increasing share of RES on residual fossil
capacity can be described by

∂∆pt,base−peak
∂φt

=

∂PERe
t

∂φt︷ ︸︸ ︷
(pcap − pstrike)

∂de
spike,t
∂φt

∆X e
PER,t + ∂MMe

t
∂φt

∆X e
PER,t

− ∆C e
t (1 − X e

IR,t,base)
∂de

t,base
∂φt

> 0.

⇒ for an increasing share of RES we find a comparative
advantage for peak-load power plants at the capacity market.

⇒ the capacity market opposes the disadvantage for peak-load
power plants at the energy-only market

page 40 Summary Sebastian Schäfer February 8, 2024



Path dependency of the optimal power plant mix
thought experiment with two scenarios

• the share of RES-based electricity generation increases over
time to the share φ

⇒ certain age distribution of residual fossil power plants
• the share of RES-based electricity generation directly increases

to the share φ (static one-shot framework)
⇒ residual fossil power plants are all of the same age
⇒ in scenario 2 the capacity mix is a best response to the share φ

of RES-based electricity generation
⇒ in scenario 1 the age distribution with comparative advantages

for older power plants prevents an optimal capacity mix
⇒ In a transition process (to RES-based electricity generation), the

advantage of already existing old power plants produces a
“delayed” transformation of the capacity mix!
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