

# **Energy Economics**

Fachbereich 2 Informatik und Ingenieurwissenschaften

Wissen durch Praxis stärkt

Sebastian Schäfer



# Market turbulence

June 2019

- On 6, 12 and 25 June 2019 balancing energy was not sufficient
- uncertainties in the weather forecast on 6 and 12 June
- prices for electricity at the intraday market higher than prices for electricity at the balancing market



Figure: Deviation of electricity supply and demand in an exemplary balancing group; source: 50hertz, Amprion, Tennet, TransnetBW (2019), Investigation on system imbalances in June 2019.



# Final changes in the auction design

- 22 July 2019: decision of the Higher Regional Court (OLG) Düsseldorf: "mixed bid auction" with constant weighting factor is unlawful
- $\Rightarrow\,$  back to the 2017 system with price limit of 9,999.99  $\in\,$ 
  - 2 November 2020: placing a bid for balancing energy without successful capacity bid possible; price limit 99,999.99 €
- $\Rightarrow$  hope: higher competition
- 16 December 2020: introduction of a price limit of 9,999.99 €
- $\Rightarrow$  Legal action before the Higher Regional Court Düsseldorf
- $\Rightarrow$  further integration into a European market...



#### Exercise

- Calculate the weighting factor for 2019 for ten deciles and illustrate them.
- Assume a price of 77,777 €/MWh for the last decile:
  - Calculate the expectation value of the price using the weighting factor of the last decile.
  - Calculate the respective price for all deciles assuming the expectation value calculated in the previous task.



# Effect of design changes on the auction design



Figure: Schematic illustration of the merit order of bids for electricity delivery (green) in the balancing market with bids for capacity (red); own illustration.



# Effect of design changes on the auction design



Figure: Schematic illustration of the changed merit order of bids for electricity delivery (green) in the balancing market with bids for capacity (red); own illustration.



# Electricity flow from aFRR and mFRR in Germany



Figure: Development of the electricity flow from aFRR and mFRR in Germany between 2010 and 2021; own illustration based on www.smard.de, Bundesnetzagentur and Bundeskartellamt, Monitoringberichte 2012 – 2016.

Sebastian Schäfer



# Outline

- 1 Introduction
- 2 Microeconomics
  - Optimal consumption
  - Optimal production
- 3 Oil and gas price caps
  - Introduction to game theory
- 4 Electricity markets
  - History and basic structure
  - The power exchange
  - Today's challenges
- 5 Capacity markets
  - Equilibrium
  - Impact of RES and power plant maturity
- 6 Balancing energy market



## Optimal consumption

- budget constraint  $m = x_1p_1 + x_2p_2$
- utility function  $u = f(x_1, x_2)$
- $\rightarrow\,$  marginal utility (MU)

$$MU_1 := \frac{\partial u}{\partial x_1}$$
$$MU_2 := \frac{\partial u}{\partial x_2}$$

 $\rightarrow$  marginal rate of substitution (MRS)

$$MRS_{1,2} := \frac{MU_1}{MU_2} = -\frac{\partial x_2}{\partial x_1}$$



#### Optimal production

- cost function  $C = x_1 w_1 + x_2 w_2$
- production function  $y = f(x_1, x_2)$
- $\rightarrow$  marginal product (MP)

$$MP_1 := \frac{\partial y}{\partial x_1}$$
$$MP_2 := \frac{\partial y}{\partial x_2}$$

 $\rightarrow$  technical rate of substitution (TRS)

$$TRS_{1,2} := \frac{MP_1}{MP_2} = -\frac{\partial x_2}{\partial x_1}$$



# Cobb-Douglas preferences





# Aggregated demand curve

The aggregated demand at a market, thus also called markt demand of n consumers is given by

$$X_1(p, m^1, \ldots, m^n) = \sum_{i=1}^n x_1^i(p_1, p_2, m^i)$$





## Price elasticity of demand

$$\varepsilon_p = \left| \frac{\% \text{ change of demand}}{\% \text{ change of prices}} \right| = -\frac{\Delta x/x}{\Delta p/p} = \frac{\Delta x}{\Delta p} \frac{p}{x}$$

or for a continuously differentiable demand function

$$\varepsilon_p = - \frac{d D(p)}{dp} \cdot \frac{p}{D(p)}$$

• Since the demand for normal goods decreases with increasing prices, the slope (respectively the derivative d D(p)/dp) is always negative. By definition this compensated by a minus.



## Elasticity of demand along the price curve



The elasticity of demand changes along the demand curve although the slope is constant. It varies between  $\varepsilon = 0$  (for p = 0) and  $\varepsilon = \infty$  (for D(p) = 0).



# Constant elasticity of demand

Price elasticity along the following curve is constant.



$$D(p) = Ap^{-\epsilon}$$

- high price (low demand) is compensated by a small D'(p).
- high value for D'(p) compensates a low price with high demand. Summary Sebastian Schäfer February 8, 2024



## Economies of scale

The effect of a simultaneous increase of all input factors is measured by the so-called economies of scale If all input factors are increased by a factor t > 1, we face **constant economies of scale** if the output equals the original output multiplied with t,  $f(tx_1, tx_2) = tf(x_1, x_2)$ **increasing economies of scale** if the output increases to more than the original output multiplied with t  $f(tx_1, tx_2) > tf(x_1, x_2)$ **decreasing economies os scale** if the output increases to less than the original output multiplied with t  $f(tx_1, tx_2) < tf(x_1, x_2)$ 



# Minimizing costs

#### optimum condition of minimal cost

For a given output level we are searching for the lowest cost level  $\rightarrow$  tangent point of isocost line and production isoquant





# Cost, profit, producer surplus





# Supply of a company

#### profit maximization by quantity management

For a company acting as price taker (**perfect competition**) we find the following objective function

$$\max_{y}\Pi = p\,y - C(y)$$

- $\rightarrow$  decisive variable: output y
  - first order condition (FOC) for profit maximization

$$\frac{\partial \Pi(y)}{\partial y} = 0 \quad \hookrightarrow \quad p - \frac{\partial C(y)}{\partial y} = 0 \quad \hookrightarrow \quad p = MC$$



# Supply of a company

#### profit maximization by quantity management

For a company acting as  $\ensuremath{\textbf{monopolist}}$  we find the following objective function

$$\max_{y}\Pi = p(y)y - C(y)$$

 $\rightarrow$  decisive variable: output y

• first order condition (FOC) for profit maximization

$$\frac{\partial \Pi(y)}{\partial y} = 0 \quad \hookrightarrow \quad \frac{\partial p(y)}{\partial y} + p(y) = \frac{\partial C(y)}{\partial y} \quad \hookrightarrow \quad MR = MC$$



# Welfare





# Equilibrium and taxes





### Taxes and welfare





# Inefficiency of a monopoly





#### Gas price cap – calculations

■ insert the known prices of 50 and 300 €/MWh into the demand function

$$950 = A50^{\epsilon}$$

$$710 = A300^{\epsilon}$$

division of first equation by the second yields

$$\frac{950}{710} = \frac{50^{\epsilon}}{300^{\epsilon}}$$
$$\ln\left(\frac{950}{710}\right) = \epsilon \ln\left(\frac{50}{300}\right) \Leftrightarrow \epsilon \approx 0.1625$$

 $\Leftrightarrow$ 



### Main result of the paper



Figure: Cost to EU consumers after a supply interruption of Russian gas; source: Neuhoff (2022).

Sebastian Schäfer



# Development of gas prices



Figure: Price evolution for TTF gas from January 1, 2022 until January 6, 2023; source: tradingeconomics.com (2023).

page 26 Summary

Sebastian Schäfer



# Electricity generation in Germany



Figure: Total net electricity generation in Germany in December 2022 (energetically corrected values); source: Energy-Charts (2023).

page 27 Summary

Sebastian Schäfer



# Oil price cap game revisited

Impact on payouts in a more general form

#### Russia

|                 |           | not accept     | accept  |
|-----------------|-----------|----------------|---------|
| EU+G7+Australia | draw back | (<-d?; 0)      | (-; -)  |
|                 | hold out  | (-d>-c; -c<-b) | (a; -b) |

with c > b and c > dpayoffs  $\Pi$ :  $(\prod_{EU+G7+Australia}; \prod_{Russia})$ 

 $\Rightarrow$  Minister for foreign affairs of Estonia demands a reduction of a cap on January 5, 2023

page 28 Summary

Sebastian Schäfer



### Development of price ratio



Figure: Evolution of the ratio of spot prices for Urals and Brent Crude Oil from January 1, 2022 until January 6, 2023; own illustration using data from investing.com (2023).

page 29 Summary

Sebastian Schäfer



# Model system with different power plants



Figure: Model system with an optimal power plant mix resulting from total costs; taken with adjustments from Schwintowski et al. (2021).

page 30 Summary

Sebastian Schäfer



# Spot market

- day ahead (auction), intraday (continuously)
- price range -1000 € 3000 €

| hour\price | 0     | 6,9   | 7      | 16,9   | 17     | 17,1   | 17,2   | 149,9  | 150    | 3000   |
|------------|-------|-------|--------|--------|--------|--------|--------|--------|--------|--------|
| 1          | 200,0 | 200,0 | 100,0  | 100,0  | 0,0    | -75,0  | -75,0  | -75,0  | -275,0 | -275,0 |
| 2          | 154,9 | 154,9 | 42,6   | 42,6   | 6,3    | 6,3    | 0,0    | 0,0    | -20,0  | -20,0  |
| 3          | -57,0 | -57,0 | -100,0 | -100,0 | -100,0 | -175,0 | -175,0 | -175,0 | -325,0 | -325,0 |
| 4          | 200,0 |       |        |        |        |        |        |        |        | 200,0  |

Figure: Exemplary bid at the day ahead market skipping negative prices; taken with adjustments from Schwintowski et al. (2021).



# Electricity market equilibrium

Assume a perfect electricity market

- optimal power plant mix
- scarcity pricing exactly covers fixed cost of all power plant operators
- $\Rightarrow$  equilibrium

Now demand increases by 10 % (shifting the load curve)

- scarcity rent (also called peak energy rent PER) increases
- revenue for all power plant operators increases to the same extent since all power plants are running in an event of scarcity
- $\Rightarrow$  a profit occurs
- $\Rightarrow$  incentive for investments into all types of power plants

page 32 Summary

Sebastian Schäfer



# Electricity market equilibrium

Now demand increases by another 1 GW every hour

- scarcity rent increases more
- revenue for all power plant operators increases since all power plants are running in an event of scarcity
- $\Rightarrow$  a higher profit occurs for base-load power plants
- $\Rightarrow$  investments are incentivized particularly for base-load power plants



#### Example for a futures contract



Figure: future and spot market results for the can manufacturer; taken with adjustments from Schwintowski et al. (2021).

page 34 Summary

Sebastian Schäfer



# Electricity supply and futures markets



Figure: Schematic illustration for the impact of the future market on the spot market for electricity; taken with adjustments from Schwintowski *et al.* (2021).

Sebastian Schäfer





Figure: Schematic illustration of the merit order after capacity of two power plants is withdrawn.

Sebastian Schäfer



# Merit order effect of RES



Figure: Schematic illustration of the merit order effect of RES as described by De Miera et al. (2008); Sensfuß et al. (2008); own illustration.



# The missing money problem p [€] MM? P<sub>cap</sub> SR IR E [MWh] Е\*

Figure: Schematic illustration of the merit with price cap and potential missing money (MM).

page 37 Summary

Sebastian Schäfer



# Capacity market equations

rational equilibrium price assuming truthful bidding

$$p_t^* = p_t(\sum_{i=1}^m C_{t,i}) = k_{t,m} + X_{PER,t,m}^e PER_t^e - (1 - X_{IR,t,m}^e)IR_{t,m}^e + \varrho_{t,m}^e$$

 the annual capital decrease equals the revenue of the power plant including MM, if occurring

$$k_{t,i} = (1 - X_{IR,t,i}^{e})IR_{t,i}^{e} + (1 - X_{PER,t,i}^{e})PER_{t}^{e} + (1 - X_{PER,t,i}^{e})MM_{t}^{e}$$

as penalty and penalty factor we receive

$$\varrho_{t,i}^{e} = X_{PER,t,i}^{e} M M_{t}^{e} \Rightarrow \xi_{t} := \frac{\rho_{t}^{*}}{PER_{t}^{e}}$$



# Capacity market equilibrium

difference between price bids of power plants i and j

$$\begin{aligned} \Delta \rho_{t,j-i} &:= \rho_{t,j} - \rho_{t,i} \\ &= \Delta k_{t,j-i} + \Delta X^e_{PER,t} PER^e_t + \Delta \varrho^e_t + (1 - X^e_{IR,t,i}) IR^e_{t,i} - (1 - X^e_{IR,t,j}) IR^e_{t,j} \\ &= \Delta \varrho^e_t - \Delta X^e_{PER,t} MM^e_t \\ &= 0. \end{aligned}$$

- $\Rightarrow \ {\sf zero} \ {\sf arbitrage} \ {\sf principle}$
- $\Rightarrow$  in the equilibrium all bids at the capacity market are identical!



# Merit order effect and capacity market

 the impact of an increasing share of RES on residual fossil capacity can be described by

$$\frac{\partial \Delta p_{t,base-peak}}{\partial \varphi_t} = \underbrace{(p_{cap} - p_{strike})}_{\substack{\partial \varphi_t}} \frac{\partial d_{spike,t}^e}{\partial \varphi_t} \Delta X_{PER,t}^e + \frac{\partial MM_t^e}{\partial \varphi_t} \Delta X_{PER,t}^e}{-\Delta C_t^e (1 - X_{IR,t,base}^e)} \frac{\partial d_{t,base}^e}{\partial \varphi_t} > 0.$$

- ⇒ for an increasing share of RES we find a comparative advantage for peak-load power plants at the capacity market.
- ⇒ the capacity market opposes the disadvantage for peak-load power plants at the energy-only market

page 40 Summary

Sebastian Schäfer



# Path dependency of the optimal power plant mix

thought experiment with two scenarios

- the share of RES-based electricity generation increases over time to the share  $\varphi$
- $\Rightarrow\,$  certain age distribution of residual fossil power plants
  - the share of RES-based electricity generation **directly increases** to the share  $\varphi$  (static one-shot framework)
- $\Rightarrow\,$  residual fossil power plants are all of the same age
- $\Rightarrow\,$  in scenario 2 the capacity mix is a best response to the share  $\varphi\,$  of RES-based electricity generation
- $\Rightarrow\,$  in scenario 1 the age distribution with comparative advantages for older power plants prevents an optimal capacity mix
- ⇒ In a transition process (to RES-based electricity generation), the advantage of already existing old power plants produces a "delayed" transformation of the capacity mix!

page 41 Summary

Sebastian Schäfer



#### References

- DE MIERA, G. S., DEL RIO GONZALEZ, P. and VIZCAINO, I. (2008). Analysing the impact of renewable electricity support schemes on power prices: The case of wind electricity in Spain. Energy Policy, 36 (9), 3345–3359.
- ENERGY-CHARTS (2023). Electricity generation in Germany. Available at: https://www.energy-charts.info/charts/energy/chart.htm?l=en&c=DE&chartColumnSorting=default, accessed November 29, 2023.
- INVESTING.COM (2023). Commodity prices. Avaialable at: https://www.investing.com/currencies/xbr-usd-historical-data, accessed January 8, 2023.
- NEUHOFF, K. (2022). Defining gas price limits and gas savingtargets for a large-scale gas supplyinterruption. Cambridge Working Papers in Economics, (2253).
- SCHWINTOWSKI, H.-P., SCHOLZ, F. and SCHULER, A. (eds.) (2021). Handbuch Energiehandel. Erich Schmidt Verlag, 5th edn.
- SENSFUSS, F., RAGWITZ, M. and GENOESE, M. (2008). The merit-order effect: A detailed analysis of the price effect of renewable electricity generation on spot market prices in Germany. *Energy Policy*, 36 (8).

TRADINGECONOMICS.COM (2023). EU natural gas. Available at: https://tradingeconomics.com/commodity/eu-natural-gas, accessed November 19, 2022.