

Environmental Assessment

Fachbereich 2 Informatik und Ingenieurwissenschaften

Wissen durch Praxis stärkt

Sebastian Schäfer

Coase and transaction cost

Figure: With adjustments taken from Endres (2022)

page 2 The big market failure?

Sebastian Schäfer

Coase and transaction cost

- more intuitive than MD-MTC₁ in the previous picture:
- \rightarrow MC=MTC_I+MAC (total marginal cost)
- \Rightarrow delivers same intersection point x^{**}
- example: MD=x, MAC=10-x, MTC_I=1-0.1x

 $\Rightarrow x^{**} = \frac{11}{2.1}$

Distortion from transaction cost

Figure: With adjustments taken from Endres (2022)

page 4 The big market failure?

Sebastian Schäfer

Coase theorem – exercise

Assume there is a country C_N negotiating with another country C_F about keeping or cutting a large forest. Country C_N profits from **keeping the forest** (emission sink) according to

$$U_N = q^2$$

while country C_F , which is the owner of the forest, generates a utility from **cutting the forest** corresponding to

$$U_F=21q-\frac{q^2}{2}$$

with q corresponding to quantity units of the forest.

- a) Use the information above to derive the damage function D_N and the abatement cost function AC_F ?
- b) Calculate the global optimum.
- c) Calculate the abatement cost AC_F for the global optimum.

page 5 The big market failure?

Sebastian Schäfer

Coase theorem – exercise

Assume there is a country C_N negotiating with another country C_F about keeping or cutting a large forest. Country C_N profits from **keeping the forest** (emission sink) according to

$$U_N = q^2$$

while country C_F , which is the owner of the forest, generates a utility from **cutting the forest** corresponding to

$$U_F = 21q - \frac{q^2}{2}$$

with q corresponding to quantity units of the forest.

- d) Calculate the utility surplus induced by the global optimum when compared to cutting the forest.
- e) Assume an equal distribution of the utility surplus. What is the payment for C_F ?

page 6 The big market failure?

Sebastian Schäfer

Coase theorem – exercise

Assume there are countries $C_{N1}, C_{N2}, ..., C_{N10}$ negotiating with one other country C_F about keeping or cutting a large forest forest. Countries C_N profit from **keeping the forest** (emission sink) according to

$$U_{\mathsf{agg.}} = q^2$$

while country C_F , which is the owner of the forest, generates a utility from **cutting the forest** corresponding to

$$U_F = 21q - \frac{q^2}{2}$$

with q corresponding to quantity units of the forest.

f) Assume there are 10 countries profiting from keeping the forest with an aggregated utility function $U_{agg.}$. How negotiations might change?

Coase theorem – solution

a) U_N reflects the utility from **keeping** the forest. The utility from **cutting** the forest corresponds to a disutility (negative utility) leading to $U_N = -q^2$ with q reflecting the amount of cut forest instead of kept forest. However, the question is not about the utility for cutting the forest but about the damage for cutting the forest which again means change of the sign eventually leading to $D_N = q^2$. For the other country we find $AC_F = U_F$ since utility corresponds to welfare and thus abatement cost.

Sebastian Schäfer

MAC and MD – summary

MAC depends on

- individual preferences
- abatement technology
- Both MAC and MD depend on
 - income

 \Rightarrow MAC and MD are not constant but change over time

Pigouvian tax

Figure: Arthur Cecil Pigou (1877 – 1959); source: Wikipedia

Pigou suggested the introduction of a tax leading to a socially optimal output level

 \Rightarrow internalization of externalities

Pigouvian tax

Figure: With adjustments taken from Endres (2022)

Pigouvian tax

- tax rate t>MAC
- $\rightarrow\,$ emission reduction advantageous
 - tax rate t<MAC</p>
- $\rightarrow\,$ emission (production) increase advantageous
- \Rightarrow for $t = MD(E^{**})$ emissions will reduce to the social optimum

Pigouvian tax and subsidy

page 13 Pricing carbon

Sebastian Schäfer

References

ENDRES, A. (2022). Umweltökonomie. Kohlhammer.