

Energy Economics

Fachbereich 2 Informatik und Ingenieurwissenschaften

Wissen durch Praxis stärkt

Sebastian Schäfer

Liberalization of electricity markets

- single provider for electricity generation, transport and distribution
- natural monopoly for electricity transport and distribution
- consumer has no choice
- \Rightarrow unbundling electricity grid and generation
- $\Rightarrow\,$ formation of new fields: electricity trading and sales
- Why to avoid monopolies?

Excursus - the monopoly

Perfect competition

Under perfect competition the single company has no influence on prices

 \Rightarrow price taker.

Monopoly

In contrast, a monopolist is the only supplier at a market.

- under a monopoly market demand only faces one supplier
- the monopolist can choose its optimal price/quantity pair!
- inverse demand p(y) determines the maximum price p if the monopolist sells quantity y.

Supply of a monopoly

profit maximization by choosing y

$$\max_{y} \Pi(y) = R(y) - C(y) = p(y) \cdot y - C(y)$$

The necessary condition (FOC) yields:

$$\frac{\partial \Pi(y)}{\partial y} = 0 \quad \hookrightarrow \quad \frac{\partial p(y)}{\partial y} y + p(y) - \frac{\partial C(y)}{\partial y} = 0$$

The sufficient condition (SOC) yields:

$$\frac{\partial^2 \Pi(y)}{\partial y^2} < 0 \quad \hookrightarrow \quad \frac{\partial^2 p(y)}{\partial y^2} y + 2 \frac{\partial p(y)}{\partial y} - \frac{\partial^2 C(y)}{\partial y^2} < 0$$

Profit maximization

profit maximizing condition

$$\frac{\partial p(y)}{\partial y} y + p(y) = \frac{\partial C(y)}{\partial y}$$

The optimal condition means

marginal revenue = marginal cost: MR(y) = MC(y)

 \Rightarrow the monopolist does not only ask for compensation of additional cost but also for compensation of the price decrease induced by increased quantity

$$p(y) = \frac{\partial C(y)}{\partial y} \underbrace{-\frac{\partial p(y)}{\partial y} y}_{>0!}$$

Inefficiency of a monopoly

Inefficiency of a monopoly

- the market price under a monopoly is higher when compared to perfect competition
- the output is lower
- \Rightarrow lower consumer surplus
 - the monopolist still maximizes profit
- \Rightarrow higher producer surplus
- \Rightarrow nevertheless, welfare loss
- \Rightarrow inefficient

Development of monopolies

- exclusive control of an input factor
- natural monopolies by steadily decreasing average cost
- cartels
- state-guaranteed monopolies
 - patents
 - sovereign monopolies

Our well-known company still produces with the cost curve:

$$C(y) = 10y^2 + 5y + 40$$

and faces a market demand

$$D(p) = 11 - \frac{1}{10}p$$

but now acts as a monopolist

- a) Calculate the output of the company and the resulting market price.
- b) Calculate MR, MC and demand and illustrate it in one diagram.
- c) Calculate and illustrate the differences in consumer rent, producer rent and welfare when compared to perfect competition.

page 9

Electricity markets

Sebastian Schäfer

 We can rearrange the demand function to obtain inverse demand which yields

$$y = 11 - \frac{1}{10}p$$
$$\Leftrightarrow p = 110 - 10y$$

The output is determined by the maximum profit Π

$$\Pi = R(y) - C(y)$$

$$\Rightarrow \Pi = p(y)y - C(y)$$

$$= (110 - 10y)y - (10y^{2} + 5y + 40)$$

$$= 110y - 10y^{2} - 10y^{2} - 5y - 40$$

page 10 Electricity markets

Sebastian Schäfer

Maximizing the profit eventually yields the output of the monopoly y^m

$$\max_{y} \Pi(y) = R(y) - C(y)$$

$$\Rightarrow 0 = \underbrace{110 - 20y^{m}}_{MR} - \underbrace{(20y^{m} + 5)}_{MC}$$

$$\Leftrightarrow 105 = 40y^{m}$$

$$\Leftrightarrow y^{m} = 2.625$$

 Profit maximization under perfect competition (reference case) yields the equilibrium output y*

$$\max_{y} \Pi(y) = R(y) - C(y)$$

$$\Rightarrow 0 = \underbrace{110 - 10y^{*}}_{P(y^{*})} - \underbrace{(20y^{*} + 5)}_{MC}$$

$$\Leftrightarrow 105 = 30y^{*}$$

$$\Leftrightarrow y^{*} = 3.5$$

 Calculation of consumer surplus CS, producer surplus CS and welfare W in the reference case yileds

$$PS = \frac{(75-5) \cdot 3.5}{2} = 122.5$$
$$CS = \frac{(110-75) \cdot 3.5}{2} = 61.25$$
$$W = PS + CS = 122.5 + 61.25$$
$$= 183.75$$

 Calculation of the change in consumer surplus CS, producer surplus CS and welfare W with respect to the reference case

$$\Delta PS = (83.75 - 75) \cdot 2.625 - \frac{(75 - MR(2.625)) \cdot (3.5 - 2.625)}{2}$$
$$= 22.96875 - 7.65625 = 15.3125$$

with

$$MR(2.625) = 110 - 20 \cdot 2.625 = 57.5$$

$$\Delta CS = -22.96875 - \frac{(83.75 - 75) \cdot (3.5 - 2.625)}{2} = -26.796875$$
$$\Delta W = \Delta PS + \Delta CS = -11.484375$$

Liberalization dividend

- decreasing wholesale prices
- (increasing electricity generation)
- \Rightarrow increasing consumer surplus
- \Rightarrow decreasing producer surplus
- \Rightarrow increasing welfare

Equilibrium price and quantity p [€] р* IR E [MWh] **E***

Figure: Schematic illustration of the merit order with inframarginal rent (IR).

page 17 Capacity markets

Sebastian Schäfer

Figure: Schematic illustration of the merit order with increased demand.

page 18 Capacity markets

Sebastian Schäfer

Merit order with a further increase in demand p [€] P_{cap} SR IR E [MWh] **E***

Figure: Schematic illustration of the merit order with a further increase in demand.

page 19 Capacity markets

Sebastian Schäfer

Inframarginal rent (IR) and scarcity rent (SR)

Let us assume sufficient competition \rightarrow power plant operators bid with their variable cost:

- If demand can be satisfied, all operators, except the one with highest variable cost, receive an inframarginal rent (IR)
- If demand can only be partially satisfied, a price peak for electricity above variable cost of all power plants occurs
- \Rightarrow power plant operators receive a scarcity rent (SR)
 - for a price above highest variable cost all power plants are assumed to run
- \Rightarrow SR is equal for all power plant operators

The missing money problem p [€] MM? P_{cap} SR

IR

E [MWh] Е*

Figure: Schematic illustration of the merit with price cap and potential missing money (MM).

Capacity markets page 21

Sebastian Schäfer

Market power and missing money (MM)

- Scarcity rents are necessary to refinance and incentivize investments
- Market power can be abused to inflate prices and reduce supply
- \Rightarrow price caps are used to limit market power abuse
- a price cap cuts scarcity rents
- \Rightarrow MM occurs if the price cap is too low
- \Rightarrow revenues at the electricity market are not sufficient to refinance and incentivize investments

Hedging load against high prices p [€] р* PER Pstrike SR IR E [MWh] Е*

Figure: Schematic illustration of the merit order with increased demand.

page 23 Capacity markets

Sebastian Schäfer

Capacity market fundamentals

- regulator determines the total capacity necessary <u>C</u>
- regulator defines a strike price p_{strike}
- regulator buys call options amounting to the necessary capacity
- call option of the regulator set an incentive to deliver electricity in an scarcity event
- $\rightarrow\,$ Reliability Option (RO)

The power plant operator's view

Figure: Schematic illustration of the distribution of electricity spot market prices for one year in \in /MWh. The duration of power plant i's production in hours is a function of the spot price; source: Schäfer and Altvater (2019).

page 25 Capacity markets

Sebastian Schäfer

The power plant operator's view

 We can calculate IR and PER of power plant operator i as follows

$$\begin{split} IR_{t,i} &= \int_{C_{G,t,i}+C_{E,t,i}}^{p_{strike}} d(p_{spot,t}) \, \mathrm{d}p_{spot,t} \\ &= d_{t,i} \left(p_{strike} - C_{G,t,i} - C_{E,t,i} \right) \end{split}$$

$$egin{aligned} {\sf PER}_t &= \int_{{\it p_{strike}}}^{{\it p_{cap}}} d({\it p_{spot,t}}) \,\, \mathrm{d}{\it p_{spot,t}} \ &= d_{spike,t} \left({\it p_{cap}} - {\it p_{strike}}
ight) \end{aligned}$$

The power plant operator's view

- We introduce the failure rate $X_{IR,t,i}$ and $X_{PER,t,i}$
- $\rightarrow\,$ share of total time the power plant is not running although prices are above variable cost
- $\rightarrow\,$ failure rates are individual for each power plant
- $\rightarrow X_{IR,t,i} \geq X_{PER,t,i}$ since incentives to keep the power plant running are higher
- \Rightarrow for a power plant operator who simply sells electricity at the **energy-only market** revenue *R* in year *t* equals

$$R_t = (1 - X_{IR,t,i})IR_{t,i} + (1 - X_{PER,t,i})PER_t$$

Investment decision and capital

- How does the capital stock of a power plant change over its lifetime?
- We assume that the change of capital *K* of power plant *i* with respect to time *t* in years can be described by the following equation

$$K_{t,i} = K_{0,i}(1 - \delta_i)^t - K_{0,i}\tilde{\delta}_i t \qquad \forall 1 > \delta_i, \tilde{\delta}_i \ge 0$$

- δ_i corresponds to the depreciation rate, a risk premium and the interest rate (profit margin) of the power plant
- $\tilde{\delta}_i$ corresponds to a linear depreciation rate if necessary
- An incentive to invest in new power plants <u>only</u> exists if there is a realistic chance to get back the investment (with an appropriate profit) during the lifetime T of the power plant

Investment decision and capital

- We assume p_{strike} equal to variable (and emission) cost of the last power plant in the merit order
- \Rightarrow scarcity rent vanishes
- lifetime depreciation of the power plant yields

$$\begin{split} \mathcal{K}_{0,i} - \mathcal{K}_{T,i} &= \mathcal{K}_{0,i} (1 - (1 - \delta_i)^T + \tilde{\delta}_i T) \\ &= \sum_{t=1}^T (\mathcal{K}_{t-1,i} - \mathcal{K}_{t,i}) := \sum_{t=1}^T k_{t,i} \\ &= \mathcal{K}_{0,i} \sum_{t=1}^T \left((1 - \delta_i)^t \frac{\delta_i}{1 - \delta_i} + \tilde{\delta}_i \right) \\ &= \sum_{t=1}^T \left((1 - X_{IR,t,i}^e) I \mathcal{R}_{t,i}^e + (1 - X_{PER,t,i}^e) PE \mathcal{R}_t^e + (1 - X_{PER,t,i}^e) M \mathcal{M}_t^e \right) \end{split}$$
(1)

References

- CRAMTON, P., OCKENFELS, A. and STOFT, S. (2013). Capacity market fundamentals. Economics of Energy & Environmental Policy, 2, 27–46.
- DE MIERA, G. S., DEL RIO GONZALEZ, P. and VIZCAINO, I. (2008). Analysing the impact of renewable electricity support schemes on power prices: The case of wind electricity in Spain. *Energy Policy*, 36 (9), 3345–3359.
- HOBBS, B. F., IŇÓN, J. and STOFT, S. E. (2001). Installed capacity requirements and price caps: Oil on the water, or fuel on the fire? The Electricity Journal, 14, 23–34.
- INFORMATION PLATFORM OF THE GERMAN TRANSMISSION SYSTEM OPERATORS (INFORMATIONSPLATTFORM DER DEUTSCHEN ÜBERTRAGUNGSNETZBETREIBER – NETZTRANSPARENZ.DE) (2018). EEG-Jahresabrechnungen. Available at: https://www.netztransparenz.de/EEG/Jahresabrechnungen, accessed April 1, 2018.
- NICOLOSI, M. and FÜRSCH, M. (2009). The impact of an increasing share of RES-E on the conventional power market-the example of Germany. Zeitschrift für Energiewirtschaft, 3.
- SCHÄFER, S. and ALTVATER, L. (2019). On the functioning of a capacity market with an increasing share of renewable energy. Journal of Regulatory Economics, 56, 59–84.
- SENSFUSS, F., RAGWITZ, M. and GENOESE, M. (2008). The merit-order effect: A detailed analysis of the price effect of renewable electricity generation on spot market prices in Germany. *Energy Policy*, 36 (8).
- VÁZQUEZ, C., RIVIER, M. and PÉREZ-ARRIAGA, I. J. (2002). A market approach to long-term security of supply. IEEE Transactions on Power Systems, 17 (2), 349–357.

WORKING GROUP ON ENERGY BALANCES (ARBEITSGEMEINSCHAFT ENERGIEBILANZEN E.V) (2018). Bruttostromerzeugung in Deutschland ab 1990 nach Energieträgern. Available at: https://ag-energiebilanzen. de/index.php?article_id=29&fileName=20171221_brd_stromerzeugung1990-2017.xlsx, accessed September 4, 2018.