

Environmental Assessment

Fachbereich 2 Informatik und Ingenieurwissenschaften

Minimizing deviations

• If the variance for an intensity-based emission cap is lower than for an absolute emission cap, we receive

$$var[A'] < var[A^A]$$

$$\Rightarrow e^{'2}var[Y] < 2e^{'}cov[Y, E^*]$$
 (1)

$$\Leftrightarrow \frac{\nu[Y]}{\nu[E^*]\rho[Y,E^*]} \frac{E'}{E[E^*]} < 2 \tag{2}$$

$$\Rightarrow \xi \frac{E'}{E[E^*]} < 2 \tag{3}$$

approach follows Sue Wing et al. (2009)

Minimizing deviations - exercise

Assume the expectation value approximately corresponds to the ten year average with a time lap of three years.

- Use the data for the German electricity market to calculate ξ for the years 2007 until 2024
- Illustrate your results in an appropriate diagram.
- What do you think about the approximation?

EUA price development

Figure: Development of ξ between 2007 and 2024 according to Sue Wing *et al.* (2009) but with a time lag of three instead of five years. Own illustration.

EUA price development

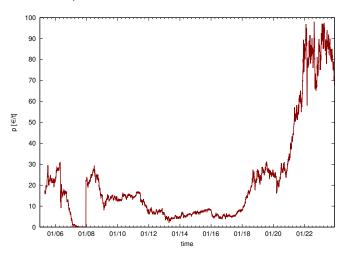


Figure: Development of the allowance price of the EU ETS between April 25, 2005 and December 6, 2023. Own illustration based on investing.com (2023).

Did the EU ETS induce emission reduction?

- Find literature about the impact of the EU ETS on emission reduction.
- Find a reliable source for CO₂ emissions in the German electricity sector (data not graphs).
- https://ag-energiebilanzen. de/en/data-and-facts/energy-balance-2000-to-2030/
- https: //unfccc.int/ghg-inventories-annex-i-parties/2023
- https://ag-energiebilanzen. de/wp-content/uploads/2023/10/STRERZ_ Abgabe-09-2023.xlsx

Emission development in Germany

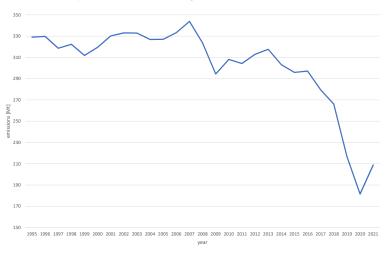


Figure: Development of total emissions in electricity generation from 1995 until 2015 in Germany. Own illustration based on Schäfer (2018).

Assessment of the EU ETS

- What does affect CO₂ emissions in the electricity sector?
- What is the general problem if we want to evaluate emission abatement induced by the EU ETS?

Assessment of the EU ETS

- Ellerman et al. (2010) construct a counterfactual scenario
- ightarrow How emissions would have developed if the EU ETS had not been in place?
- → elimination of demand side effects (e.g. economic cycles)
- ⇒ emission intensities (emissions per electricity output)
- \rightarrow approach of Ellerman and Buchner (2008); Ellerman *et al.* (2010); Anderson and Di Maria (2011); Egenhofer *et al.* (2011)
- → Ellerman *et al.* (2010) construct a counterfactual scenario for the German electricity sector and calculate emissions abatement in the first trading period

Constructing a counterfactual scenario

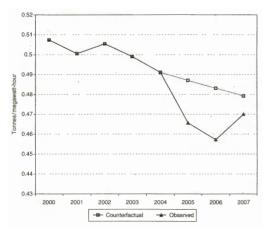


Figure: Development of emission intensity in the German electricity sector from 2000 until 2007 and counterfactual scenario as average of the 2000 - 2004 emissions according to Ellerman et al. (2010).

Sebastian Schäfer

Emission abatement in the 1st trading period

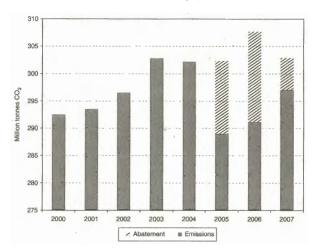


Figure: Emission abatement during the 1st trading period of the EU ETS using the counterfactual intensities developed before; source: (Ellerman et al., 2010).

Evaluation of emission abatement

- Ellerman et al. (2010) find a CO₂ abatement amounting to ca.
 34.5 Mt within the German electricity sector during the 1st trading period of the EU ETS.
- their analysis faces several problems
- the analysis is based on only 4 values (2000 2004) of an uncertain source
- the EU ETS is not the only factor affecting CO₂ emissions in the German electricity sector
- \rightarrow fuel prices
- → subsidies for RES-based electricity generation
- ightarrow In the following we will first set up an alternative approach from 2005 until 2015

Emission development in the German electricity sector

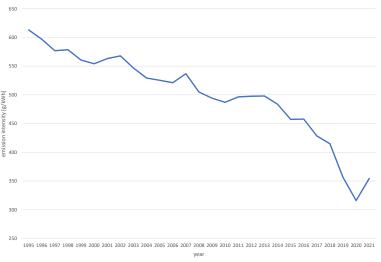


Figure: Development of emission intensity in the German electricity sector from 1995 until 2015. Own illustration based on Schäfer (2018).

Emission intensity development in Germany

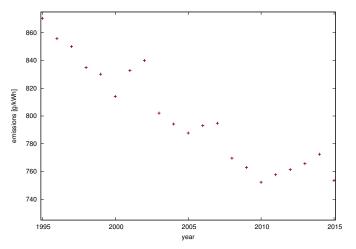


Figure: Development of emission intensity in the German electricity sector within the sphere of the EU ETS from 1995 until 2015 according to Schäfer (2018).

Development of fuel prices

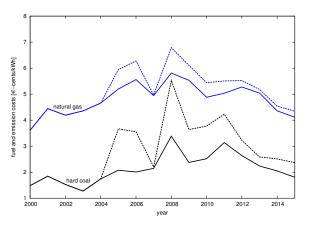


Figure: Development of fuel prices for generation of one kWh electricity based on hard coal respectively gas. The solid lines reflect pure fuel prices $\hat{p}_{i,coal}$ and $\hat{p}_{i,gas}$ while the dashed lines also consider emission costs induced by the EU ETS yielding $p_{i,coal}$ and $p_{i,gas}$. Prices also consider changes in the degree of efficiency. Own calculations based on Working Group on Energy Balances (2018,c) and Statistics of the Coal Sector (2018).

Regression of emission intensities

How a reasonable equation considering the time trend, fuel and allowance prices for emission intensities could look like?

$$ln(e_i) = b + a_t \cdot (i - 2000) + a_p \cdot p_{i,ratio} + \epsilon$$
 (4)

- b as axis intercept
- ullet as error term
- $p_{i,ratio}$ corresponds to the price ratio between hard coal and gas $(p_{i,coal}/p_{i,gas})$
- $p_{i,coal}$ and $p_{i,gas}$ consist of pure fuel prices $\tilde{p}_{i,coal}$ and $\tilde{p}_{i,gas}$ plus a respective surcharge $\Delta p_{i,coal}^{ets}$ and $\Delta p_{i,gas}^{ets}$ stemming from the FU FTS

Excursus – coefficient of determination R^2

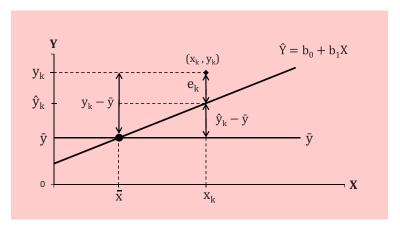


Figure: Decomposition of total deviations from the mean value according to Backhaus et al. (2015).

Excursus – coefficient of determination R^2

We can decompose the total deviation from the mean value

$$\underline{y_k - \bar{y}} = \underline{\hat{y}_k - \bar{y}} + \underline{y_k - \hat{y}_k}$$
total deviation expl.deviation residual

It can be shown that the following equation holds

$$\sum_{k=1}^{K} (y_k - \bar{y})^2 = \sum_{k=1}^{K} (\hat{y}_k - \bar{y})^2 + \sum_{k=1}^{K} (y_k - \hat{y}_k)^2$$
SSR

This allows to calculate the coefficient of determination

$$R^2 := \frac{SSE}{SST}$$

Regression of emission intensities

	results
R^2 \bar{R}^2	0.842 0.818

Table: General statistical analysis of the linear regression with R^2 as coefficient of determination, \bar{R}^2 as adjusted coefficient of determination.

	a _t	a _p	b
	-0.0051	-0.0777	6.7440
5	0.0010	0.0310	0.0144
R^2	0.766	0.505	

Table: Statistical analysis of coefficients a_t , a_p , b with s as standard error and R^2 as coefficient of determination resulting from a correlation test for a_i and a_p separately.

ETS assessment – exercise

- Calculate the regression parameters using data for the years 2000 – 2015
- Calibrate the axis intercept so that it equals the average of the years 2000 – 2002 if possible
- Calculate the expectation value of the emission intensities of the counterfactual scenario
- Calculate the expectation value of the absolute emission abatement

References

- ANDERSON, B. and DI MARIA, C. (2011). Abatement and allocation in the pilot phase of the EU ETS. Environmental and Resource Economics, 48, 83-103.
- BACKHAUS, K., ERICHSON, B., PLINKE, W. and WEIBER, R. (2015). Multivariate Analysemethoden. SpringerGabler.
- EGENHOFER, C., ALESSI, M., GEORGIEV, A. and FUJIWARA, N. (2011), The EU Emissions Trading System and climate policy towards 2050 - real incentives to reduce emissions and drive innovation? Centre for European Policy Studies, accessed October 19, 2018.
- ELLERMAN, A. D. and BUCHNER, B. K. (2008), Over-allocation or abatement? a preliminary analysis of the EU ETS based on the 2005-06 emissions data. Environmental and Resource Economics. 41, 267-287.
- ELLERMAN, A. D., CONVERY, F. J. and DE PERTHUIS, C. (2010). Pricing Carbon: The European Union Emissions Trading Scheme. Cambridge (Massachusetts): Cambridge University Press.
- INVESTING.COM (2023). Commodity prices. Avaiable at:
 - https://www.investing.com/currencies/xbr-usd-historical-data, accessed January 8, 2023.
- SCHÄFER, S. (2018). Decoupling the EU ETS from subsidized renewables and other demand side efects lessons from the impact of the EU ETS on CO₂ emissions in the german electricity sector. MAGKS Joint Discussion Paper Series in Economics No. 35-2018.
- STATISTICS OF THE COAL SECTOR (STATISTIK DER KOHLENWIRTSCHAFT E.V.) (2018). Verwendung der Braunkohlenförderung, Available (partially on requrest) at: https://kohlenstatistik.de/19-0-Braunkohle.html, accessed July 8, 2015.
- Sue Wing, I., Ellerman, A. D. and Song, J. (2009). Absolute versus Intensity Limits for CO₂ Emission Control: Performance under Uncertainty. Cambridge (Massachusetts): MIT Press.
- WORKING GROUP ON ENERGY BALANCES (ARBEITSGEMEINSCHAFT ENERGIEBILANZEN E.V) (2018), Energy Balances. Available at: https://ag-energiebilanzen.de/7-1-Energy-Balance-2000-to-2015.html, accessed April 1, 2018.