Studiengang Mechatronik

Modul 5 – Konstruktion 1:

Fertigungstechnik

- Vorlesung -

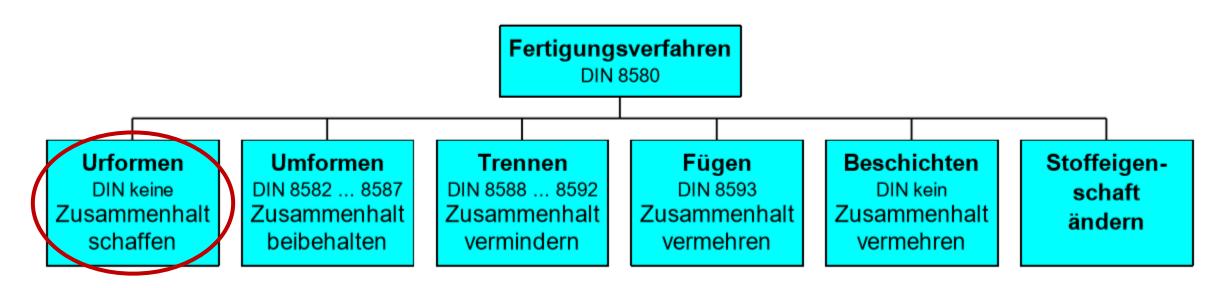
Prof. Dr. Enno Wagner

4. November 2025

Übersicht

Thema Urformen

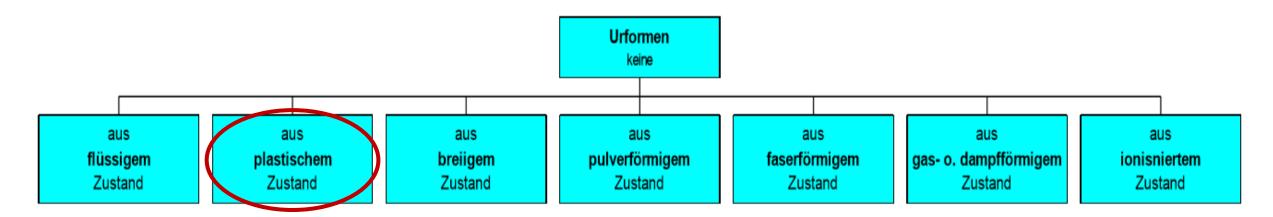
- Nachtrag zum Metallguss
- Urformen aus dem plastischen Zustand
 - Gießen von Kunststoffen


Untergliederung der Fertigungsverfahren

Hauptgruppen nach DIN 8580

Fertigungsverfahren

Einteilung in 6 Hauptgruppen nach DIN 8580



Quelle: Skript Prof. H. Albrecht, Frankfurt AUS, WS 16/17

Definition Urformen

1. Urformen

Def.: Fertigen eines festen Körpers aus einem formlosen Stoff mit Hilfe einer Hohlform, deren innere Oberfläche der äußeren Oberfläche des Bauteils entspricht.

Quelle: Skript Prof. H. Albrecht, Frankfurt AUS, WS 16/17

1. Urformen

- 1.1 Metallguss
- 1.2 Pressen von Kunststoffen
- 1.3 Gießen von Kunststoffen
- 1.4 Pulvermetallurgie
 - Pressen von Metallen
 - Pressen von Keramik

Nachtrag zu 1.1 Metallguss

Quelle:

Schwerkraft Kokillen-Guss

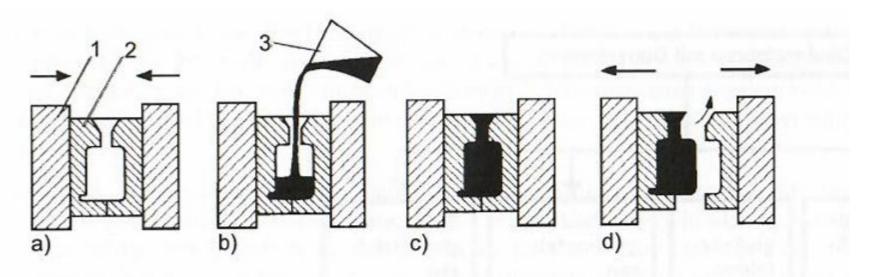
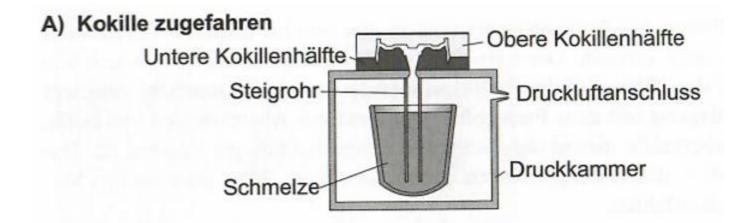
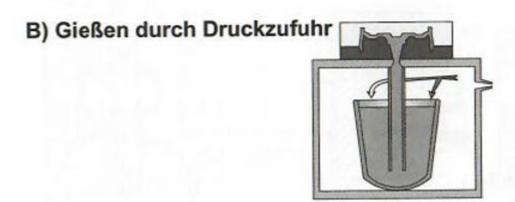
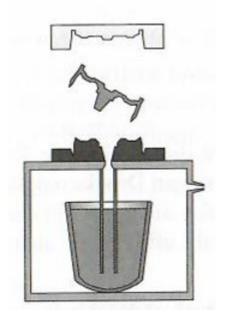


Bild 2.17: Verfahrensablauf des Schwerkraftkokillengießverfahrens

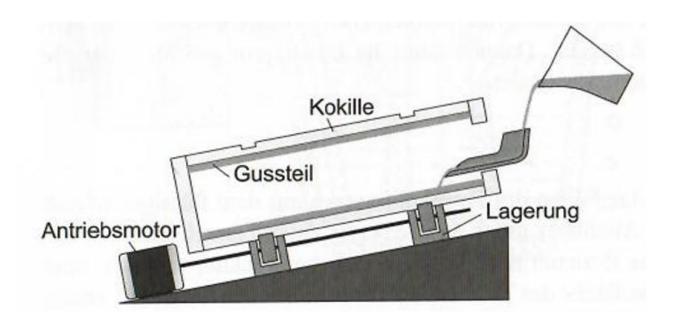

a) Schließen der Kokille b) Abgießen c) Erstarren des Gussteils d) Gussentnahme
 1 Kokillenaufspannplatte, 2 Kokille, 3 Gießpfanne


Quelle:



Niederdruck Kokillenguss

C) Gussteil entnehmen



Quelle:

Schleudergießen

Schleudergießen mit geneigter Drehachse

Quelle:

- Rohr-Kokillen
- Durch Zentrifugalkraft
- Ring- oder rohrförmige Gussteile
- Gusseisen (Lamellen und Kugelgrafit)
- Kein Kern notwendig
- Gussteile haben hohe Dichte
- Keine Gasblasen
- Feinkörniges Gefüge
- Hohe Druck und Verschließfestigkeit

Verständnisfragen Metallguss

- Welches Gießverfahren für den Metallguss hat für die mechatronische Konstruktion eine wichtige Bedeutung?
- Nennen Sie 2-3 Beispiele.
- Mit welchen Metallen/Legierungen wird hier meist gearbeitet?
- Welche Stückzahlen werden hier typischerweise kalkuliert?
- Nennen Sie Vor- und Nachteile des Verfahrens.

Urformen von Kunststoffen

1.2 Pressen von Kunststoffen

Formpressen

pulver-, pasten- oder tablettenförmige duroplastische Formmasse wird unter Druck und Wärmeeinwirkung plastisch erweicht und in den Hohlraum zwischen den beiden Werkzeugteilen (Stempel und Form) gepresst


Duroplast

Mit Wärme aushärtbar, aber später nicht mehr durch Wärme nicht mehr schmelzbar/umformbar, enthält harte amorphe unlösliche Polymere

Unterteilung Kunststoffe

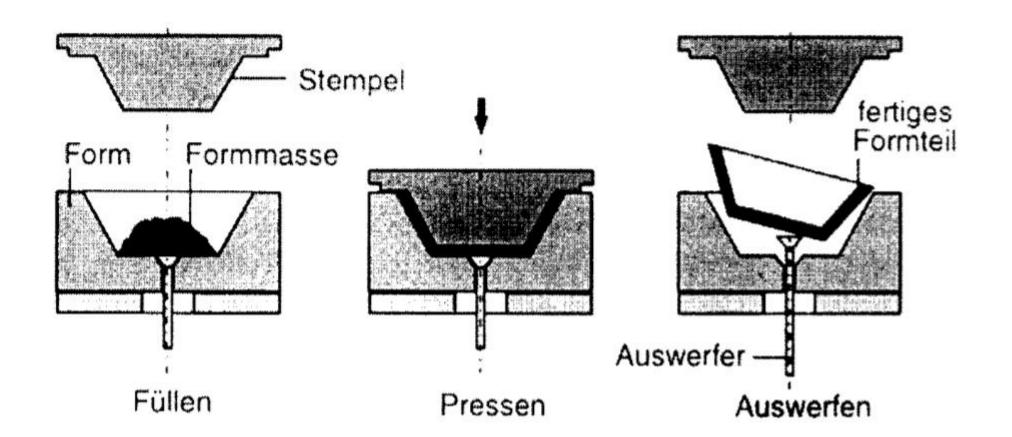
Duroplaste

Duroplaste bestehen aus engmaschig vernetzten Polymeren. Vernetzungen sind in der Abbildung als rote Punkte dargestellt.

Elastomere

Elastomere bestehen aus weitmaschig vernetzten Polymeren. Die Weitmaschigkeit erlaubt unter Zugbelastung eine Streckung des Materials.

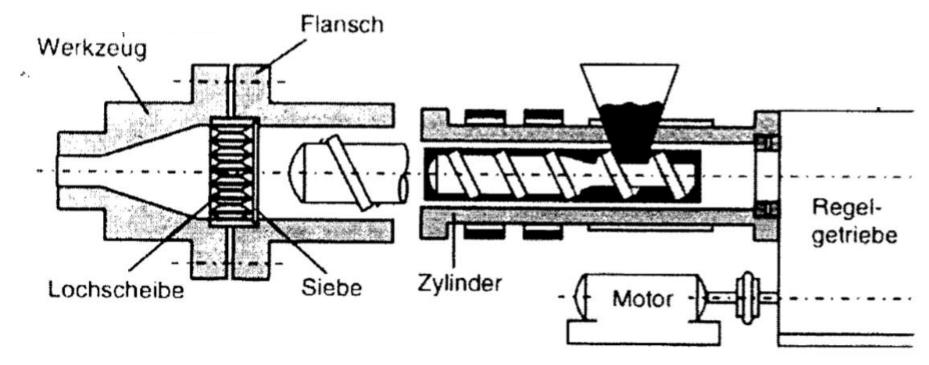
Thermoplaste



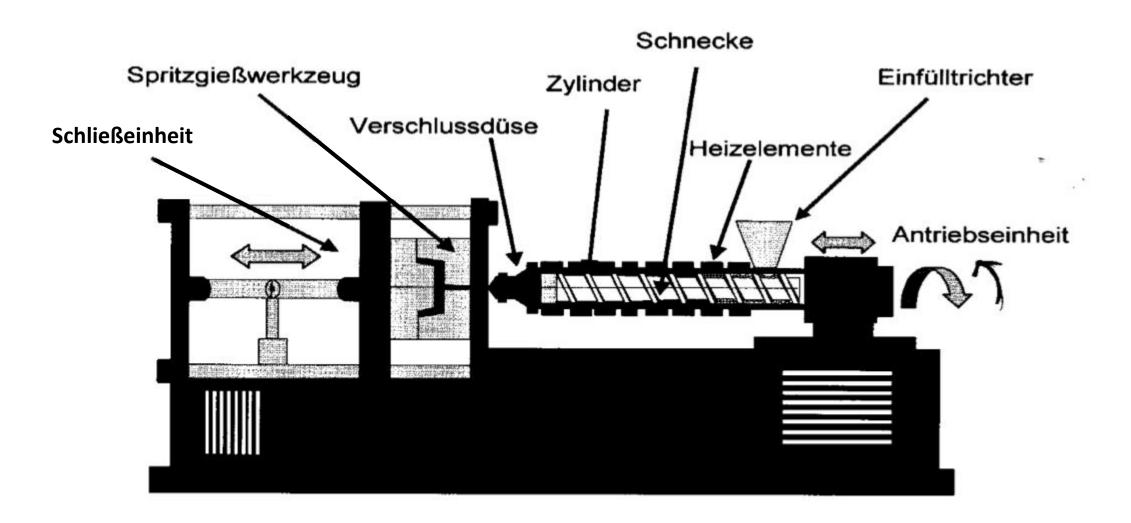
Thermoplaste bestehen aus unvernetzten Polymeren, oft mit einer teilkristallinen Struktur (rot dargestellt). Sie haben eine Glastemperatur und sind schmelzbar.

Quelle: Wikipedia

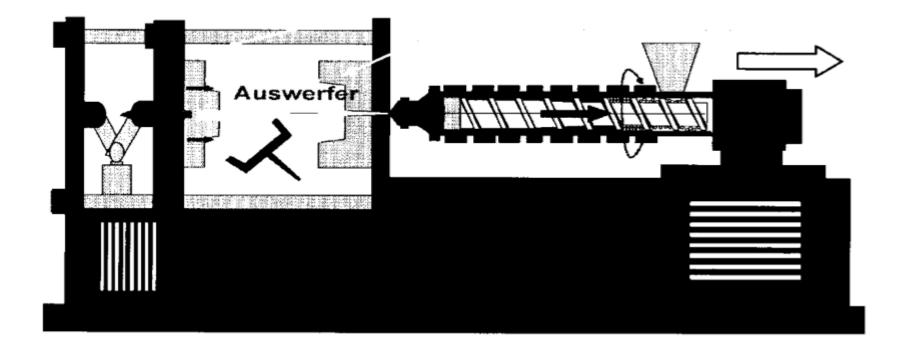
Formpressen mittels Formmasse

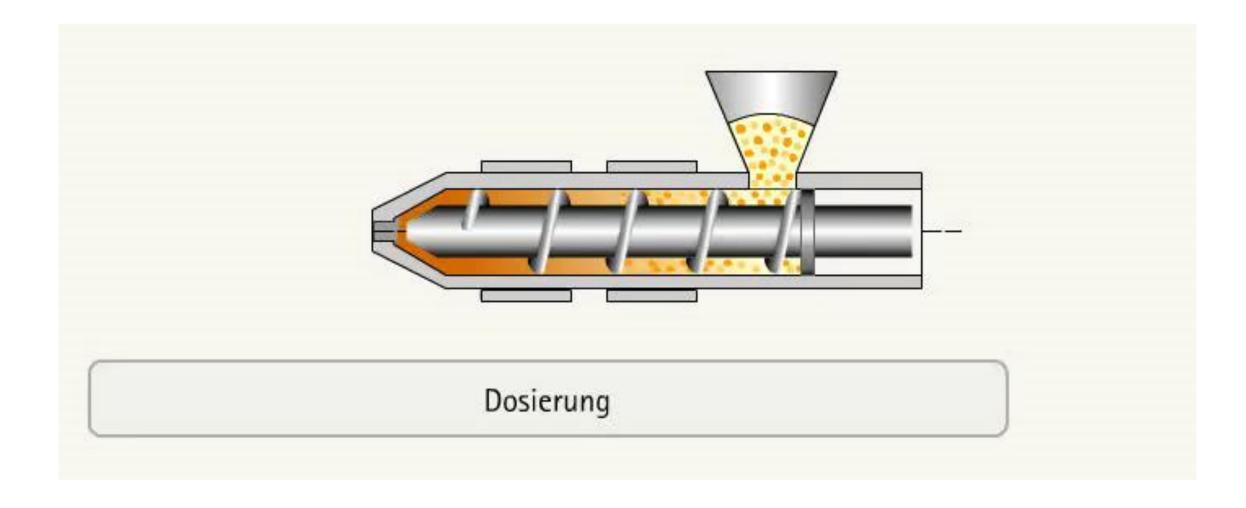


Quelle: TdF, TU Darmstadt


Extrudieren

Duro- oder thermoplastische Formmasse wird durch eine Förderschnecke über eine Matritze (hat die Querschnittsform des zu fertigenden Profils) ins Freie gepresst. Das Verfahren arbeitet kontinuierlich





- Schließeinheit öffnet das Werkzeug automatisch
- Bauteil (Spritzling) wird entformt
- Vor dem nächsten Arbeitszyklus muss Schnecke zurück fahren

Spritzgießen

Spritzgießen

FRANKFURT UNIVERSITY OF APPLIED SCIENCES

Auswahl der Kunststoffe

- Bei der Auswahl von Kunststoffen als Werkstoff für Konstruktionsteile sind deren spezifischen Eigenschaften zu beachten:
- geringe Dichte (=> 0,9 ... 1,4 g/cm³ => Al = 2,7 g/cm³)
- niedrige Wärmeleitfähigkeit (=> 0,1 ... 0,35 W/K*m => St 50 W/K*m)
- großer Längen-Temperaturkoeffizient (6 .. 8-mal größer als bei Metallen)
- niedrige Temperaturbeständigkeit => ggfs. Brandgefahr
- niedrigere mechanische Belastbarkeit
- ausgeprägte Zeitabhängigkeit Kennwerte => Alterung (mechanische Werte, Lichtechtheit)
- Aufnahme von Wasser

Auswahl der Kunststoffe

- Umweltproblematik bei ihrer Herstellung und der Entsorgung!
- Durch eine optimale Werkstoffauswahl können aber folgende Zielfunktionen erreicht werden:
 - gutes Laufverhalten und hohe Verschleißfestigkeit (auch ohne Schmierstoff)
 Notlaufeigenschaften
 - gute Stoßbelastungs- und Stoßdämpfungseigenschaften
 ruhiger, geräuscharmer Lauf
 - gute Korrosions,- Öl,- und Chemiekalienbeständigkeit => Glasfasern
 - beliebige Farbgebung durch Zusatz von Farbstoffen
 - Verringerung der Brennbarkeit durch Zusatz von Bromverbindungen Achtung: Gesundheitsschädlich!

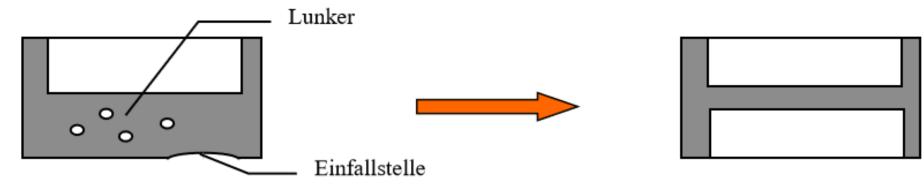
Duroplastische Werkstoffe nach Krause FERT, S. 60 T 4.20 (siehe auch DIN 7708, 7728)

Werkstoff, Kurzzeichen	Eigenschaften	Biegefes-	Gebrauchs-	Anwendung
Handelsname		tigk	temperatur	
		in N/mm ²		
Phenol-Formaldehyd PF	gute mechan. Eig.	40100	100 150	Pressteile für hohe Bean-
Plastadur, Bakelit, Per-	feuchtebeständig			spruchung, Verpackung
tinax				
Harnstoff-Formaldehyd	elektrisch hoch-	30	80	Stecker, Hartpapier, Iso-
UF Keramin, Resipas,	wertig, lichtbest.			Material
Resopal				
Epoxidharze	hochfest, kaum			Komplizierte Pressteile,
EP	Schwund, wärme-			Vergussmasse für Prä-
Epilox, Araldit	best.			zisionsteile, Bindemittel
Polyesterharze UP	hochfest, wärme- u.			Gehäuse, Transportbehälter
Keripol, Plaskon, Birapol	chemiekalienbest			

Thermoplastische Werkstoffe nach Krause FERT S. 4.22 (siehe auch DIN 7728)

Werkstoff, Kurzzeichen	Eigenschaften	Biegefestigk.	Gebrauchs-	Anwendung
Handelsname		in N/mm2	temperatur	
Polyamid	formbeständig,	30100		Zahnräder, Gleitlager,
PA6; PA11;PA12	zäh, abriebfest,	(300)	9030	Dichtungen, Gehäuse, Lüf-
Miramid, Akulon, Rilsan	lösungsmittelfest			terteile
Polyethylen PE		12 16	7050	Niedere Ansprüche, preis-
				günstig
Polypropylen PP	Gut formbest.,	24 34	10020	Teile in komplizierter form,
Hostalen PP, Mosten	laugen- u. säure-			kochfeste Teile
	fest			
Polyurethan PUR	ähnlich PA, tem-			hochbeanspruchte Formtei-
Perlon U, SYSPURET	peraturstand-fest,	30 70	80	le, Laufrollen, Dichtungen,
	zähfest			Bedienele.

Thermoplaste für hohe Temperaturen

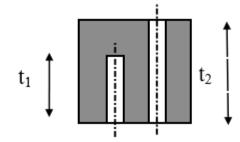

Polyoximethylen POM Delrin, Hostaform,	hart, steif bei gu- ter Zähigkeit, sehr verschleiß- fest, leicht verar- beitb.	90 100	10060	Präzisionsspritzgußteile: Zahnräder, Gleitlager, Laufrollen, Dichtungen, Gehäuse
Polycarbonat PC Makrolon, Lexan, Mer- lon	hochfest, tempe- ratur- u. witte- rungsbest. glas- klar	90 100	130100	Ventile, Schaugläser, Steckverbinder, Folien
Polytetraflouräthylen PTFE	sehr gute Gleiteig., höchste	14	250200	Pumpen, Dichtungen, Foli- en, Beläge für Trans-

Gestaltung von Spritzgussteilen

Gleichmäßige Wanddicke, keine Werkstoffanhäufungen

• Aushebeschrägen 0,5 ... 2°

Konstruktion


Hinterschneidungen vermeiden

aber: die elastischen Eigenschaften der Thermoplaste (kleiner E-Modul) lassen Hinterschneidungen zu, solange ein Ausformen des Teils - eben durch elastische Verformung - möglich ist

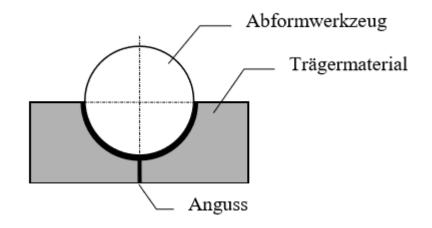
-Löcher mittels kegligen Stiften

$$t_1 = 4 * d$$

 $t_2 = 2 * d$

Nachbearbeitung:

Spanende Bearbeitung ist zu vermeiden, lediglich Entgraten, Entfernen der "Schwimmhäute"


Toleranzen: Allgemeintoleranzen nach DIN 16901 -formgebundene Maße

- (a) unterliegen Werkzeugverschleiß, Ungleichmäßigkeit der Formmasse, ungleiche Schwindung -nicht formgebundene Maße
- (b) resultieren aus der Gratbildung und dem Versatz zwischen Ober- und Unterteil

Gießen von Kunststoffen

- Gießen von Kunstharzen Verfahren: Form (Negativform des Endproduktes) wird ausgegossen mit Vergussmassen (Wachs, Parafin, Epoxidharze, Polyurethane), nach Aushärtung kann das Teil entformt werden.
- Anwendung: Prototypenbau, Prototypenwerkzeugbau, Vergießen von Bauteilen zur Lagefixiereung (Einbau von Lagern, Tränken von Transformatoren), Herstellen hochgenauer Geometrien mit ggfs. speziellen Eigenschaften an Bauteilen (Abformen)

Faser-Verbundstoffe

- Verbundwerkstoffe aus Faser-Matrix -Laminate Verfahren: Fasern aus Glas oder Kohlenstoff getränkt in Epoxidharz werden z. B. unter verschiedenen Winkeln in Lagen auf einen Zylinder gewickelt und danach im Wärmeofen ausgehärtet
- Anwendung für maßgenaue, hochfeste, leichte, korrosionsbeständige, wärmebeständige, isolierende, dynamisch beanspruchte Konstruktionsteile, Behälterbau - Bauteile in der Luft- und Raumfahrt - Zylinder in Pumpen -Rennwagenbauteile

Pulvermetallurgie

1.4 Pulvermetallurgie

1.4.1 Pressen von Metallen

Werkstoffe verarbeitbar, die sich nicht aus dem schmelzflüssigen Zustand Urformen lassen Werkstoffe und Anwendung:

Hochschmelzende Metalle:

Wolfram => Glühfäden von Glühlampen (durch Strangpressen),

• Tantal => Spinndüsen

• Zahnamalgame: Kupfer, Zinn, Edelmetalle + Hg => Aushärtung in wenigen Stunden

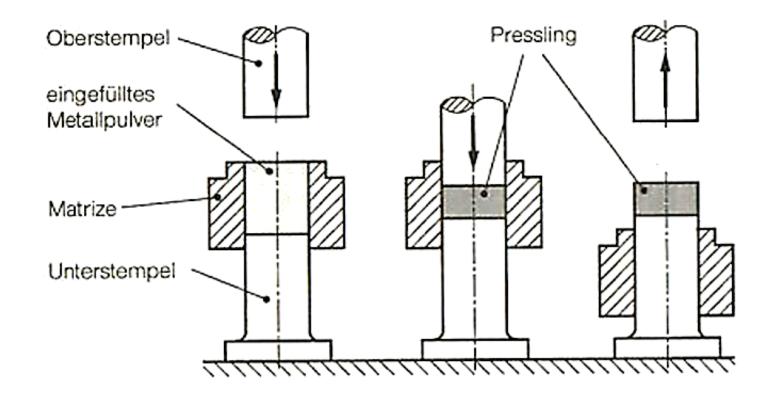
• Sinterhartmetalle: => Werkzeugschneiden

• Schwermetalle: => Isotopentransportbehälter, Schwungmassen für Uhren

Metallkohle: Metalle + Graphit => Kontaktwerkstoffe

Ferromagnetika => Dauermagnete, HF-Kerne

stark poröse Sintermetalle getränkt mit Öl => Gleitlager


Fertigungsverfahren:

- Bereitstellen der Ausgangsstoffe:
 - Zerkleinern, Elektrolyse, Reduktion von Metalloxiden;
 - Sieben;
 - Vorglühen;
 - Mahlen;
 - Zusetzen von Legierungskomponenten oder Bindemitteln
- Pressen des Pulvers zu Formteilen

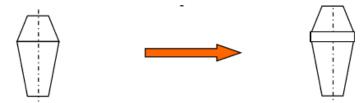
Koaxiales Pressen mit feststehendem Untertisch nach dem Matrizenabzugsverfahren

Quelle: Fritz, Schulze: Fertigungstechnik, Springer 2006

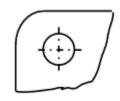
Sintern

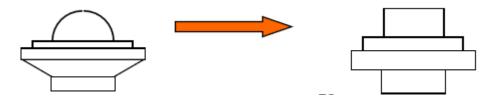
- Sintern der Formteile durch Wärmebehandlung in Glühöfen unter Schutzgas
- dadurch ergeben die Pulverteilchen einen festen Verband
- Korngröße: 0,1 ... 400 μm
- Nachbearbeitung: Beschichten, Stoffeigenschaft ändern, selten spanen
- Toleranzen: -+0,1 ... 0,05 mm (bei einfachem Sintern)
- wirtschaftliche Mindeststückzahl: 5.000 ... 10.000

Füllfaktor am Presswerkzeug


Quelle: Fritz, Schulze: Fertigungstechnik, Springer 2006

Fertigungsgerechtes Gestalten:


• Berühren von Ober- und Unterstempel vermeiden


• Dünnwandige Stellen vermeiden, um kräftige Stempel zu erhalten

Keglige und runde kuglige Formen ersetzen durch zylindrische Formen

1.4.2 Pressen von Keramik

Unterschied zu Metallpressteilen => mehr Nachbehandlung notwendig

Werkstoffe und Anwendung DIN VDE 0335:

• C100 Hartporzellane ⇒ Isolatoren

C200 Magnesium-Silikat-Keramik ⇒ Schaltkörper, Sockel

• C300 Rutil- und Titanatmassen ⇒ Isolatoren in der HF-Technik

• C400 Poröse Isolierkeramik ⇒ Heizleiterträger für Wärmegeräte

Man unterscheidet:

• plastischen Anteil (Ton, Porzellanerde Kaolin)

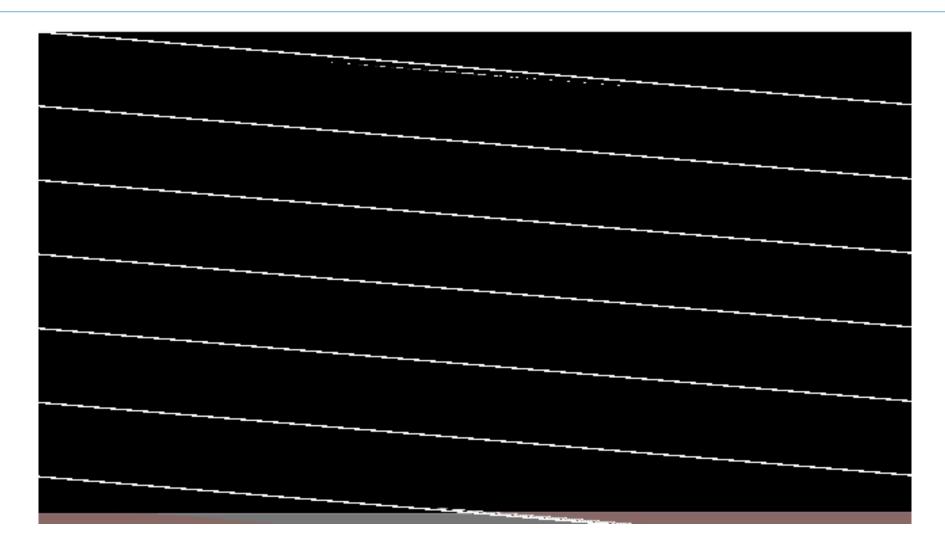
• kristallinen Anteil (Feldspat, Quarz, Marmor in Pulverform)

Sintern von Keramik

Fertigungsverfahren

-Formpressen bei Raumtemperatur ; auch Strangpressen möglich

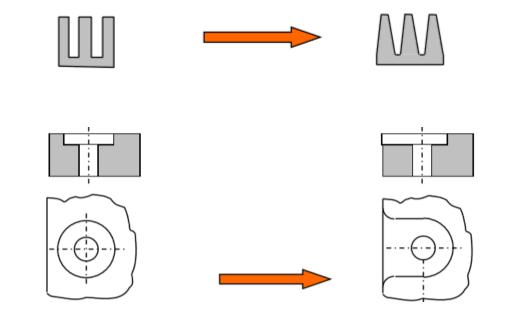
 $Nachbehandlung \downarrow$


- -Trocknen des ausgeschobenen Formteils an der Luft
- -Entgraten
- -Vorglühen bei 800 ... 900 °C
- -Glasieren
- -Fertigbrennen (Sintern) $\vartheta \approx 0.8 \ \vartheta_{\rm S} \ (1000... \ 1400^{\circ} \rm C)$
- -Nachbearbeitung nur durch Schleifen

<u>Toleranzen:</u> $-\pm 1$... 0,5 mm (mittel bis grob nach DIN ISO 2768) (angegeben in DIN 40686)

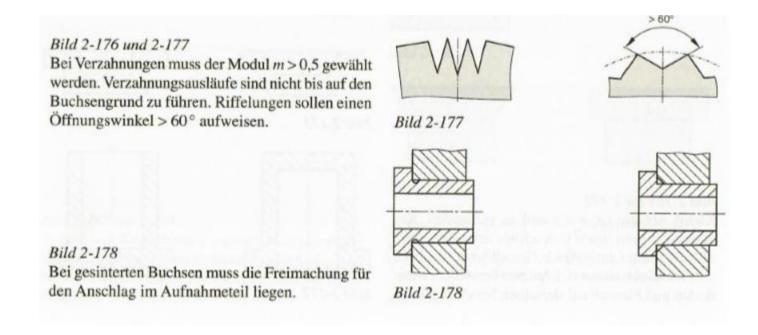
wirtschaftl. Mindeststückzahl: 5000 ... 10.000

Sintern Keramik



Sintern von Keramik

Fertigungsgerechtes Gestalten: Raab Blatt 9; Krause FERT Tafel 4.40 S. 79


zu beachten

- großer Schwund,
- Fertigteile sehr spröde
- Mindestradien: r > 1,5 mm
- Aushebeschräge

Sintern: Fertigungsgerechte Konstruktion

Quelle: Fritz, Schulze: Fertigungstechnik, Springer 2006

Vielen Dank für die Aufmerksamkeit!

Noch Fragen?

Hinweis

Diese Folien sind ausschließlich für den internen Gebrauch im Rahmen der Lehrveranstaltung an der Frankfurt University of Applied Sciences bestimmt. Sie sind nur zugänglich mit Hilfe eines Passwortes, dass in der Vorlesung bekannt gegeben wird.