Kapitel 3, Übung 3: Aufgaben

Voraussetzung: Kapitel 3, Seiten 42-55

3.6. Bestimmen Sie die Gleichung der Tangentialebene bzw. die Linearisierung für die folgenden Funktionen.

a)
$$f: \mathbb{R}^2 \to \mathbb{R}$$
, $f(x,y) = \frac{x^2 + y^2}{1 + x^2 + y^2}$ am Punkt (1,2)

- b) $f: \mathbb{R}^2 \to \mathbb{R}, f(x,y) = \sqrt{x^2 + y^2}$ am Punkt (1,0)
- c) $f: \mathbb{R}^3 \to \mathbb{R}$, $f(x, y, z) = (x + y)^2 z^2$ am Punkt (1,2,3)
- d) (freiwillig)

$$f: \mathbb{R}^{3} \to \mathbb{R}^{3}, f(x,y,z) = \begin{pmatrix} f_{1}(x,y,z) \\ f_{2}(x,y,z) \\ f_{3}(x,y,z) \end{pmatrix} = \begin{pmatrix} x+y^{2}+z^{2} \\ x^{2}+y+z^{2} \\ x^{2}+y^{2}+z \end{pmatrix} \text{ am Punkt (-1,0,1)}$$

- 3.7. Bestimmen Sie, ob und, wenn ja, welche Extrema die folgenden Funktionen haben.
 - a) $f: \mathbb{R}^2 \to \mathbb{R}$, $f(x, y) = x^2 \cdot y^2$
 - b) $f: \mathbb{R}^2 \to \mathbb{R}, f(x,y) = x^3 + y^3 x y$

Kapitel 3, Übung 3: Lösungen

- 3.6. Bestimmen Sie die Gleichung der Tangentialebene bzw. die Linearisierung für die folgenden Funktionen.
 - $f: \mathbb{R}^2 \to \mathbb{R}, f(x,y) = \frac{x^2 + y^2}{1 + y^2 + y^2}$ $g(x,y)=\frac{5}{6}+\frac{1}{18}(x-1)+\frac{1}{9}(y-2)$
 - b) $f: \mathbb{R}^2 \rightarrow \mathbb{R}$, $f(x,y) = \sqrt{x^2 + y^2}$ a(x, y) = x
 - c) $f: \mathbb{R}^3 \to \mathbb{R}$, $f(x, y, z) = (x + y)^2 z^2$ g(x, y, z) = 81 + 54(x 1) + 54(y 2) + 54(z 3)
 - d) $f: \mathbb{R}^{3} \to \mathbb{R}^{3}, f(x,y,z) = \begin{pmatrix} f_{1}(x,y,z) \\ f_{2}(x,y,z) \\ f_{3}(x,y,z) \end{pmatrix} = \begin{pmatrix} x+y^{2}+z^{2} \\ x^{2}+y+z^{2} \\ x^{2}+y^{2}+z \end{pmatrix}$ $g(x,y,z) = \begin{pmatrix} 0 \\ 2 \\ 2 \end{pmatrix} + \begin{pmatrix} 1 & 0 & 2 \\ -2 & 1 & 2 \\ -2 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} x+1 \\ y \\ z-1 \end{pmatrix}$
- 3.7. Bestimmen Sie, ob und wenn ja welche, Extrema die folgenden Funktionen haben.
 - a) $f: \mathbb{R}^2 \rightarrow \mathbb{R}$, $f(x,y) = x^2 \cdot y^2$

Mögl. Extremum bei (0,0). Aber Hesse-Matrix bei (0,0) ist Nullmatrix. Kein Extremum.

b) grad f = 0 hat 4 Nullstellen: $x=\pm\sqrt{1/3}$ und $y=\pm\sqrt{1/3}$ sind jeweils zu kombinieren.

Bezeichnung:
$$(+,-)$$
 entspricht $x=+\sqrt{1/3}$ und $y=-\sqrt{1/3}$, usw.
Hess $(f)_{(+,-)}=\begin{bmatrix} \frac{6}{\sqrt{3}} & 0 \\ \end{bmatrix}$ ist positiv definit. Dort ist ein Minimum.

Hess
$$(f)_{(+,-)} = \begin{pmatrix} \frac{6}{\sqrt{3}} & 0 \\ 0 & \frac{-6}{\sqrt{3}} \end{pmatrix}$$
 ist indefinit. Kein Extremum

Hess
$$(f)_{(-,+)} = \begin{vmatrix} \frac{-6}{\sqrt{3}} & 0 \\ 0 & \frac{6}{\sqrt{2}} \end{vmatrix}$$
 ist indefinit. Kein Extremum.

Bezeichnung:
$$(+,-)$$
 entspricht $x=+\sqrt{1/3}$ und $y=-\sqrt{1/3}$, usver $f(f)_{(+,+)}=\begin{pmatrix} \frac{6}{\sqrt{3}} & 0 \\ 0 & \frac{6}{\sqrt{3}} \end{pmatrix}$ ist positiv definit. Dort ist ein Minimum. Hess $(f)_{(-,+)}=\begin{pmatrix} \frac{6}{\sqrt{3}} & 0 \\ 0 & \frac{-6}{\sqrt{3}} \end{pmatrix}$ ist indefinit. Kein Extremum. Hess $(f)_{(-,+)}=\begin{pmatrix} -\frac{6}{\sqrt{3}} & 0 \\ 0 & \frac{6}{\sqrt{3}} \end{pmatrix}$ ist indefinit. Kein Extremum. Hess $(f)_{(-,-)}=\begin{pmatrix} -\frac{6}{\sqrt{3}} & 0 \\ 0 & \frac{6}{\sqrt{3}} \end{pmatrix}$ ist negativ definit. Dort ist ein Maximum.